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MAGNETIC RATE DAMPING FOR SATELLITES IN LEO 

Peter Zentgraf1, Domenico Reggio 2 
This article deals with the topic of damping the rates of a satellite after 
separation from the launcher by sensing the rates with magnetometers or 
gyroscopes and actually damping it with torquerods or thrusters. In literature 
problems of this kind are treated by linearization which is not adequate here due 
to the high nonlinearity of the problem caused by the high gyroscopic torque.  
This paper addresses the observability and controllability of the rate dynamics 
for symmetric satellite bodies. Furthermore, robust stability of any bodies is 
investigated by means of the Krasovskii–LaSalle principle which is a variant of 
Ljapunov’s Second Method. It is found that – apart from one exception - the 
system is robustly stable for certain conditions depending only on the gain 
matrix and not depending on the orbit, moments of inertia or initial conditions. 
The exception is that of the intuitive case of an equator type orbit, in which the 
satellite rotates around the magnetic field lines, in this case the satellite’s rate 
cannot be damped.  
Several design configurations are analysed with respect to their performance and 
cost: Rate damping with magnetometers or gyroscopes as sensors, and 
torquerods and thrusters as actuators. The results are evaluated with respect to 
the time to reach the desired rate, the propellant and the power equivalent 
battery mass used. The goal is to use the results to allow an AOCS equipment 
and architecture trade-off at an early project phase.  
The design of the rate damping control of the SWARM project is presented as 
an example and demonstrated with simulations. 

INTRODUCTION 

Most satellite missions begin with the same challenges when the separation from the 
launcher has taken place: Their fast rotation rate must be damped with the limited power 
of the battery, before it can be recharged with the solar arrays. 
During this phase the rotational rate is measured in many cases with gyroscopes which 
allow to measure the rate in all three body axes. The rate signal is transmitted to the 
controller which commands the actuators to create a break torque, again in all three body 
axes. However, outside of the USA, ITAR restrictions and costs related to gyroscopes 
may be prohibitive for the mission and forces the designer to look for alternative 
solutions. 
One alternative to gyroscopes for the problem considered in this paper are 
magnetometers. This design choice was made for instance by the SWARM mission  [2]. 
Magnetometers are less complicated equipments and significantly cheaper than 
gyroscopes and are offered by many suppliers worldwide. However, magnetometers can 
only simultaneously measure the rate in the two axes perpendicular to the Earth magnetic 
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field lines. The rate component about the magnetic field line themselves cannot be 
measured. But luckily, while the satellite travels on its orbit it “sees” the field lines from 
all different angles and thus throughout the orbit will be able to provide measurements of 
the rate about all three axes. 
Similarly, on the actuator side, due to the strength of the magnetic field in Low Earth 
Orbits (LEO) torquerods are an alternative actuator to thrusters and wheels for the rate 
damping after separation. But these suffer in an analogous manner to the magnetometers 
from the direction of the magnetic field. 
Intuitively, rate damping using magnetometers will take longer than rate damping using 
gyroscopes. But how much longer will it take? And even more fundamental: Is the 
heuristic reasoning for using magnetometer derived rate signals also mathematically 
correct? In other words, are there for instance any initial conditions which in combination 
with the orbit plane may lead to loss of controllability, observability or even instability?  
There are many references on the control of satellites using magnetometers and/or 
torquerods, for instance  [1]. However, in these the plant models are linearised, which is 
suitable for many cases, but which does not appear to be appropriate for the investigation 
of initial rate damping, since at separation the rates and the non-linear gyroscopic torque 
are very large and any linearization would generate in general – i.e. for an arbitrary 
moments of inertia matrix (MOI) - large modeling errors. 
The paper is organized as follows: 

• The observability and controllability is investigated for a certain type of MOI 
matrix of satellites, which can be described as a linear time-varying system.  

• A control strategy for rate damping and Sun acquisition is proposed, and stability 
is investigated for satellites with any MOI matrix.  

• With this strategy several sensor and actuator configurations (gyroscopes or 
magnetometers together with thrusters and torquerods of different size) are 
analysed with respect to (wrt) the time which is needed to accomplish rate 
damping and the mass penalty (H/W, fuel, battery mass) which is needed to 
achieve that performance. 

PROBLEM STATEMENT 

The system equation of a rigid body is described by the well-known Euler equation 

ηω
τωωω
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=×+
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 (1) 

in which 
• I  is the 3x3 moment of inertia matrix, 
• ω is the 3x1 rate vector of the satellite, 
• τ is the 3x1 vector of sum of control torque and disturbances, 
• y is the 3x1 measurement signal vector 
• C(t) is the 3x3 time varying measurement matrix and 
• η is the 3x1 perturbation term vector 

For the system described in Eq. (1) the task is to damp the rate ω for a given initial 
condition ω0. It is assumed as it was the case for SWARM, that for these high rates the 
nominal attitude sensor measurements during the separation phase cannot be used, 
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otherwise the rates could be completely derived. After the rate is small enough the 
satellite rotates to acquire an attitude such that its solar arrays provide sufficient power. 
The time needed for that is much smaller than the time to damp the rate. Therefore, and 
also because it depends on the acquisition strategy itself, this phase is neglected here. 
In the first instance the rotational rate of the satellite shall be measured with 
magnetometers only. Magnetometers measure the Earth magnetic field b wrt the body 
frame of the satellite. In general, the change of a vector wrt time expressed in one frame 
can be expressed in another frame rotating wrt the first one by  [1] 

b
dt
bd

dt
bd

b

body

b

inertial

×+= ω
32143421
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(2)

in which 
b
bb =  is the Earth magnetic field unit vector and ω is the rate with which the 

body frame rotates wrt the inertial frame. Multiplying Eq. (2) with the cross product 
matrix of b , b

~ 3, yields 

( ) '
~~~ 2

bbbbb −−=− ω&  (3)

The signal bb &~
 is the measured rate signal measω : The signal b  is measured by the 

magnetometers and its derivative wrt the body frame, b& , is derived on-board by numerical 
differentiation; reformulating Eq. (3) yields 

[ ] '
~
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~
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tC
tbtbEbb T

meas −−=−= ωω
44 344 21

&  
(4)

in which C(t) is the time varying measurement matrix. As it can be seen from Eq. (4), the 
rate measurement signal measω  is composed of two parts: 

1. The ideal signal [ ]ω)()( tbtbE T−  which yields the true body rate without the 
component around the magnetic field b , 

2. And a perturbation signal '
~

bb−  describing the inertial change of the magnetic 
field. This signal is bounded in magnitude and its value depends only on the orbit 
and neither the attitude nor the rate. It can be considered as a bounded 
perturbation contributor to the ideal rate signal. 
For instance, in SWARM with an orbit inclination of 88 deg and >300 km altitude 
this value is about 0.2 deg/s, thus defining the maximum accuracy of the rate 
determination using magnetometers alone. For an equator orbit with idealized 
dipole Earth magnetic field model – where the magnetic field vector would 
inertially constantly point parallel to the Earth rotation axis – the value is zero, 

                                                 
3 The cross product matrix a~  is a notation defined such that the matrix-vector product va~  yields the same result as 
with the cross vector product va× , where v is an arbitrary vector. 
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see Figure  1. However, then the rate can never be determined around this inertial 
constant axis, similar to rate control using Sun sensors. 
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Figure  1. Maximal Rate Measurement Error in one Orbit due to Change of Idealized Earth 

Magnetic Dipole Model Versus Orbit Inclination Angles. 

As far as the actuators are concerned, torquerods generate only control torques τ 
perpendicular to the Earth magnetic field, whereas thrusters or wheels generate torques 
around all three body axes. 
To summarize, the non-linear system equations in Eq. (1) can be written for different 
sensor/actuator configurations as follows: 

ηωω
τωωω
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+−=
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m
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 (5)

where η is the bounded rate measurement noise. The type of input control matrix, B, and 
the type of measurement matrix, C, depend on the sensor/actuator configuration 
according to table Table 1, in which E represents the 3x3 unity matrix. 

Table 1. Values for (B,C) Matrices Depending on Sensor/Actuator Configuration. 

 B-matrix of Actuators 

 Thrusters or wheels Torquerods 

Gyroscopes ECEB == ;  ECtbtbEB T =−= );()(  

C
-M

at
ri

x 
of

 R
at

e 
Se

ns
or

s 

Magnetometer )()(; tbtbECEB T−==  )()();()( tbtbECtbtbEB TT −=−=  

OBSERVABILITY AND CONTROLLABILITY 

In order to more readily analyze the observability of the system using magnetometers and 
torquerods the shape moments of inertia matrix is restricted to “cigar-type” symmetric 
body around the x-axis, i.e. two entries of the matrix are the same:  
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Note that the SWARM MOI matrix has a very similar form, which is also typical for a 
large class of LEO satellites: 

 
1220520
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2mkgI SWARM
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Then the system can be written without modelling errors wrt Eq. (1) as linear time-
varying system  [4] 
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observability for Linear Time-Varying Systems 

A condition for observability of time-varying systems can be found in  [5]: 
Theorem: A linear time-varying system is “completely” observable in the time interval 
[t0, t1] iff the “observability gramian” M(t0, t1), 

dttttCtCttttM
t

t

TT ),()()(),(),( 0010

1

0

ΦΦ= ∫ , (11)

is non-singular.  
The 3x3 matrix ),( 0ttΦ  is the transition matrix. 
Note that “completely” observable means that any possible initial state is observable. 
It can be shown  [5] that if the system is observable in [t0, t1], then it is also observable in 
[t0, t2] for any t2>t1. This is very practical, since the gramian Eq. (10) needs to be 
evaluated for one t1 only. 
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Duality of observability and controllability 

Under certain conditions of the system matrices as given below the observability implies 
controllability and vice versa in  [5]:  
Theorem: If a linear time-varying system is observable and if the system matrices hold 
the following equations true 

,)()(
,)()(

T

T

tCtB
tAtA

=

−=
 (12)

then the system is also controllable. 
Note: As it can be seen from Eq. (9) and Table 1, this is the case here. If the rate is 
observable then it is also controllable via magnetic torquerods. 
Computation of observability Gramian 

In order to compute the observability Gramian the transition matrix ),( 0ttΦ  (using 
Eq. (9)) and the measurement matrix C(t) need to be computed: 
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where a simple dipole Earth magnetic field model is assumed  [1], i.e. 

( )[ ] iTiii mrrE
R
kb 33 −=  (15)

with  
• mi as idealized dipole vector [0 0 1], k is a constant and  
• ri the position unit vector in a circular orbit with radius R expressed in inertial 

frame – because of the symmetry to the magnetic field all orbits are 
distinguished by the inclination angle i .  

It is shown in  [6] that the transformation matrix b
iT  in Eq. (14) from inertial frame to 

body frame can analytically be computed for any initial attitude and rate and any 
moments of inertia matrix as defined in Eq. (6) by 

( )0
0

00 ),(*),( b
i

p
xp

b
i T

I
I

I
tI

RotateetRotateT
ω
ωω

ω=  (16)

in which 
• Rotate(angle, axis) defines the rotation of one frame about a given axis and an 

angle, 
• ω0 is the initial rate, 
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• ( )0b
iT  is the initial attitude of the body frame wrt the inertial frame. 

Inserting Eqs. (13)-(16) into Eq. (11) allows to compute the Gramian M with 8 scalar 
independent variables ω0, ( )0b

iT , moments of inertia ratio Ix/Ip, and inclination angle i. 
Unfortunately the singularity of M can only be analyzed numerically. As a measure of 
matrix singularity the minimal singular value ( )Mminσ  is used: 

( )
{ ( ){ }M

i
I
I

T
p

xb
i

min

00 ,,,

min: σ

ω

χ =  
(17)

If χ is zero, M is singular, otherwise M is not singular. 
The approach is checked with a simple test: A satellite flying an equator orbit (i=0 deg), 
with initial attitude ( )0b

iT =E, with initial rate around the inertial z-axis (for instance 
ω0=[0 0 5] deg/s) cannot be observable, because it rotates around the magnetic field 
throughout the orbit from t0=0 and t1=2π/Torb (Torb is the time to travel one full orbit). 
This should be reflected in the evaluation of χ in Eq. (17). Computing χ yields χ =0, 
which was expected. Thus, M is singular and the system defined in Eq. (8) is not 
observable and the approach passed the test. 
For a practical example χ is computed in the following three steps: 

1. Define meaningful lower and upper bounds for the free variables to cover the 
SWARM mission  [2]: 

a. 0.3 deg/s < |ω0| < 10 deg/s 
b. 0.5 * (Ix/Ip)nominal < Ix/Ip <  12* (Ix/Ip)nominal  ((Ix/Ip)nominal = 30/1200 from 

Eq. (7) 
c. 80 deg< i < 90 deg 
d. All possible directions for ω0 and for the initial attitude ( )0b

iT are 
considered. 

2. Perform a parameter study with 106 combinations of the free variables given in a.-
d. and find smallest χ 

3. For a practical approach, use this value as starting point for non-linear constrained 
optimization (Matlab function fmincon  [7]) to find a local minimum. We are 
aware that possible other algorithms may find the global minimum. 

For the SWARM case this yields a result of χ=0.9899 for the variable given in Table 2: 
Table 2. Results of minimization to determine χ. 

Variables Values 

ω0_min  [0.0739    -0.1381    0.2559] deg /s 

( )0b
iT _min 0.6866   -0.1827    0.7037 

-0.1998    0.8832    0.4243 

-0.6990   -0.4319    0.5699 
Ix/Ip_min 0.5 * (Ix/Ip)nominal 

i_min 80.0021 deg 



 

 8

As an example in Figure  2 is the 3-dimensional plot of χ around its minimum on two of 
the eight variables shown. The “carpet”-type shape of the figure indicates that the 
influence of the moments of inertia ration has much less influence on the gramin than the 
rate. 
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Figure  2. Singularity measure χ of M around its minimal value for varying Ix/Ip_min and |ω0|_min 

Conclusions on observability and controllability 

M is non-singular (since χ>0.9899) wrt the considered variable range (any initial attitude, 
any rate direction and any rate magnitude between 0.3 and 10 deg/s and inclination 
angles between 80 and 90 deg) and thus, the system defined in Eq. (8) is observable as 
well as controllable. 

STABILITY OF RATE DAMPING CONTROL 

The stability of the system Eq. (5) is investigated by means of the Krasovskii–LaSalle 
principle  [8]: 
 
Krasovskii–LaSalle principle  [8]:  
Given a representation of the system, )()( xftx =& , where x is the vector of variables, 
with 0)0( ==xf . 
If a continuous differentiable (Lyapunov) function )(xV  can be found such that 

• 0)( >xV  (positive definite) 
• 0)( ≤xV&  (negative semi definite) 

and 0)0()0( ==== xVxV &   
and if the set { })0( =xV&  contains no trajectory of the system except the trivial trajectory 

0)( =tx  for 0≥t , then the origin 0)( =tx  is globally asymptotically stable. 
 
The Krasovskii–LaSalle principle is in fact a relaxation of Ljapunov’s Second Method 
 [9], because it allows 0≤V&  whereas Ljapunov’s Second Method strictly requires 0<V& . 
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The basic idea of the stability investigation is to determine the set of all trajectories 1x  
for which 0)( 1 =xV&  and to check if 1x  is a possible trajectory of the system, i.e. is 

)()( 11 xftx =&  a true equation or not. 

Construction of Lyapunov’s Function 

The Lyapunov function is selected to be 

0for  0
2
1

>>= ωωω IV T  (18)

which is only zero for |ω|=0. 
The derivative is expressed by inserting the system equations Eq. (8)  

{ τωτωωωω
τωω

ωω BBI
BI

IV TTTT =+
=

=
+−=

= 321&&

0

~
~

 (19)

The control law used for damping the rate is a simple proportional controller using 
Eq. (8): 

ωωτ CKK dmd −=−=  (20)

The derivative of the Lyapunov function can now be written as 
ωω CBKV d

T−=&  (21)

Using magnetometers and torquers as the most “challenging” configuration gives with 
the corresponding B and C matrices from Table 1: 

( ) ( )ωω
4444 34444 21

&

P
bbEKbbEV T

d
TT

:=
−−−=  

(22)

Note that V&  does not depend on the moments of inertia matrix I, and thus not on any 
changes or uncertainties of I. 
Now the question is under which circumstances, i.e. for which trajectory ω(t), the matrix 
P can become positive semi-definite, because then 0≤V& . Consider the following 
properties: 

• The matrix ( )TbbE −  has for any magnetic field unit vector b  rank 2. It can 
easily be seen that the eigenvector corresponding to the eigenvalue zero is b . 

• If the choice of dK is restricted to symmetric, positive definite matrices, then it 
can be decomposed into the product of a full rank matrix S and its transpose, 

T
d SSK = , and the matrix P in Eq. (22) can be similarly decomposed into  

( )[ ] ( )[ ]TTT bbESbbESP −−=  (23)

This means that P has the same rank as matrix ( )[ ]TbbES −  which has rank 2, 
and therefore matrix P has exactly one eigenvalue zero and the corresponding 
eigenvector is b . 

This means that it needs to be checked if it is possible to have a trajectory of the kind 
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)()()(1 tbtct =ω  (24)

with a free selectable time-varying scalar function c(t), because then 
( ) ( ) ( ) ( ) 0=−−−=−−−= bbcKbbEbcbcbbEKbbEbcV d

TTT
d

TT&  (25)

and the system is not globally asymptotically stable. This is also the only possible 
candidate which can cause 0=V& . 
To investigate if the candidate trajectory in Eq. (24) is a possible system trajectory it is 
differentiated and inserted into Eq. (5) to give: 

bIbcbcIbcI
II
~

~
2

111

−=+⇔
−=

&&

& ωωω
 (26)

The candidate trajectory 1ω in Eq. (24) is then a possible trajectory if a scalar function c 
can be derived which solves the vector equation Eq. (26). 
Two main cases are distinguished now, namely that b is an eigenvector of I and that b is 
not an eigenvector of I: 

1. Case bbI λ≠  
In this case is 0~

≠bIb . If a scalar function c solves Eq. (26), then it will also 
solve for the Tb and IbT  projections – in other words left-multiplications - of 
Eq. (26). If for these projections no scalar function c can be derived, then there 
will be also no solution for Eq. (26): 

bIbbIbccbIcbbIbcIb
IbbbIbccbIcbIbbcb

TTTTT

TTTTT

2222 //0:(26) Eq.*
//0:(26) Eq.*
&&&&

&&&&

−=→=+
−=→=+

 (27)

 Rearranging Eq. (27) yields 
bIbIbbbIbbIbbIbbIbIbbbIb TTTTTTTT 2222 //1:/// ==⇔= α&&&&  (28)

where the arbitrary scalar α has been introduced. Eq. (28) can be written in two 
equations 

( )
( ) 0

:

0
=

=

−
=−

b
J

EIIb
bEIIb

T

T

43421

&

α
α

 
(29) 

(30)

Eq. (30) can only be true if the matrix product I*J has an eigenvalue zero and b is 
the corresponding eigenvector. Since I is positive definite, I*J can only have a 
zero eigenvalue if J has a zero eigenvalue. J only has a zero eigenvalue if α is an 
eigenvalue of I, and only if b were then the corresponding eigenvector to α  the 
product I*J*b is zero. But this would mean that b is required to be the eigenvector 
of I – a case which has been explicitly excluded here!  
To conclude, Eq. (30) cannot be solved, and thus neither Eq. (26), and thus is 

1ω in Eq. (24) not a system trajectory that solves Eq. (5). 
2. Case bbI λ=  
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In this case is 0~
=bIb . Then Eq. (26) can be rewritten as 

( )
0
0

=+⇔
=+

bcbc
bcbcI
&&

&&
 (31)

From kinematics of derivatives in rotating systems 
bbbb ′=′+−=  

0

~
1321

& ω  
(32)

where b′ is the derivative in the inertial frame, Eq. (31) can be written as 

b
c
cb
&

−=′  (33)

Solving Eq. (33) for b yields  

44 344 21

&

0

)(
)(exp)(

0

0

>

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∫ −=

scalar

ds
sc
scbtb

t

t
 

(34)

In other words, in an orbit where the Earth magnetic field does not change its 
direction the candidate trajectory 1ω in Eq. (24) is in deed a possible trajectory. 
The only orbit where the magnetic field evolves over time as shown in Eq. (34) is 
a near equator orbit, where the field lines are throughout the mission life time 
parallel to the inertial z-axis. Then and only then, the trajectory  

01 )( bct =ω  (35)

will not decrease the Lyapunov function V and the rate will not be reduced. This 
case is already evident from intuition. The news is that this is the only 
constellation where this can happen. 
Only in a near equator orbit the system defined in Eq.  (5) and (20) might not be 
globally asymptotically stable. This is then the same situation as if the rate should 
be measured with sun sensor measurements only. However, in practice LEO 
missions do not fly in such an orbit. 

Impact of Remaining Equipment Configurations on Stability 

So far stability has been shown when magnetometers are used as sensors and torquerods 
are used as actuators. From Table 1 remain three configurations to be checked: 

1. Gyroscopes & Thrusters 
The P-matrix in Eq. (22) is reduced to the controller gain matrix Kd. If this matrix 
is selected positive definite, global asymptotical stability is of course ensured 
even for the near-equator orbit. 

2. Gyroscopes & Torquerods 
The P-matrix in Eq. (22) becomes now unsymmetrical: 



 

 12

( ) ωω
4434421

&

2: P
KbbEV d

TT

=

−−=  
(36)

For this case the new candidate trajectory for which the Lyapunov function might 
not shrink is 

( )
43421

)(:
)()()(

2

1
2

tb
tbKtct d

=

= −ω  
(37)

Since the controller gain matrix Kd was required to be positive definite its inverse 
always exists.  
The previously performed analysis on the magnetometer/torquerod configuration 
did not make any assumption on a magnetic field vector b. Therefore, the analysis 
is also valid for a magnetic field vector ( ) bKb d

1
2

−= , which is only a scaling of 
vector b. Therefore global asymptotical stability is of course ensured except for a 
near-equator orbit. 

3. Magnetometers & Thrusters 
The P-matrix in Eq. (22) becomes again unsymmetrical: 

( )ωω
4434421

&

3: P
bbEKV T

d
T

=

−−=  
(38)

The only trajectory that may cause 0=V&  is the same as in Eq. (24),  
)()()(1 tbtct =ω  (39)

therefore the same analysis and the same conclusion hold. 
Impact of Limiters on the Approach 

For stability to be ensured the only requirement on the controller gain matrix Kd is that it 
is positive definite – it does not mean it cannot be time varying, but it must remain 
positive definite.  
Therefore, vector limiters which limit the magnitude of the desired torque but remain its 
direction are of no stability concern: A new, fictitious controller gain matrix Kd2 can be 
expressed by the old matrix Kd divided by the factor, for which the desired torque 
exceeds the vector limiter. This multiplication does not change the positive-definite 
property of the controller gain matrix Kd and thus not the stability. 
The second type of limiters, axis limiters, do not maintain the torque direction but limit 
the maximal values in each axis. The argument here is similar. Say satcτ  is the saturated 
torque in any axis, and descτ  (no zero entries assumed in this example) was the desired 
torque we wanted to have originally. Then for instance one possible positive definite gain 
matrix which will map one torque into the other is *

dK  as given below: 
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=  
(40)

Conclusions on Stability 

Note that no assumption was made on a specific model of the magnetic field. Global 
asymptotical stability is achieved when the rates are measured using magnetometers 
and/or the torques are commanded using torquerods. Only in one case this property might 
get lost: When the satellite flies in an orbit where the direction of the magnetic field does 
not change inertially, stability cannot be shown. This may in theory only happen in a near 
equator orbit, but in practice this is unlikely, since the real geomagnetic field is not 
perfect symmetric. 

WORST CASE RATE DAMPING IN AN IDEALIZED ENVIRONMENT 

This section compares the rate damping performances with different sensor / actuator 
configurations, as well as different sensor signal types and thruster and torquerod sizes. 
SWARM mission parameters are assumed here using a simple, idealized model. 
Measures for Performance and Cost 

The performance measure is the time needed to damp out a rate magnitude of 8.67 deg/s 
(5 deg/s in all axes) down to a magnitude of 0.5 deg/s. 
The cost measure in order to reach the performance is the mass. Two types of masses are 
distinguished: 
1. The “static” mass which comprises all mass needed to use either thrusters (i.e. the 

mass needed for tanks, feed module, thruster pipe work, tank support, thruster 
support and of course the fuel needed for initial rate damping) or the mass of three 
torquerods. If thrusters are mandatory for orbit control, then here the total allocated 
fuel for attitude control should be counted. 

2. The “dynamic” mass which means the battery mass which is needed to provide the 
energy, i.e. the power during rate damping; as conversion factor the one for Lithium 
batteries (300 W hr/kg) is taken as realistic value  [12]. Since it is possible that the 
battery size is driven by large payload needs the dynamic mass computed for rate 
damping might be already included in the battery sizing, and is listed separately. 

Equipment configurations 

In total 4 different sensor signals and 5 different actuators are used, i.e. 20 combinations 
are checked and compared. To be more realistic, key parameters from existing 
equipments are used. 
The characteristics of the usage of the different units are explained as follows: 

1. Sensors 
In total, 4 different sensor signals are generated from 2 units: 

a. Magnetometer: As a possible unit the properties from the LusoSpace unit 
 [13] are used to derive the cost.  
The impact of three different rate signals is investigated: 
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i. The measurement of the magnetic field is differentiated with a 
simple discrete differentiator, and the cross product with the 
measurement, bb ×& , is used as rate measurement signal. 

ii. In order to check the impact of the accuracy of the differentiation, 
the best possible signal that a filter on board could derived is used, 
namely the right hand side from the kinematic equation of Eq. (4), 

( ) bbbbE T
m ×′+−= ωω . This signal is derived from the physical 

simulator and fed directly into the onboard-part of the simulator. 
iii. The ideal 2-axis measurement rate measurement without the 

component around the magnetic field vector is taken as a reference 
only. Clearly, this signal could never be derived onboard. 

b. Gyroscope: The cost properties from the MEMS gyroscope  [14] is used to 
derive the costs. 

2. Actuators 
In total, 5 different actuator configurations using 3 different actuator units are 
compared. The maximal possible torque is computed by a constrained optimization 
routine  [7]. 

a. The 100 Am2 torquerods from Dutch Space are used to represent a 
medium size [15]. 

b. In order to represent a large size, the properties of the 100 Am2 torquerods 
are used for a fictitious unit of 150 Am2. 

c. As an extreme large torquerod the 700 Am2 unit from Dutch Space is 
used. 

d. For medium sized thrusters, the one from Bradford  [16] are used as they 
are accommodated for SWARM. 

e. In order to represent a large sized thruster, the same properties of the 
medium sized thrusters are used but their distance wrt the COG position is 
doubled to get double torque capacity. 

The configurations are summarized in Table 3. 
Table 3. Sensor/Actuator Configurations Used in the Analysis. 

 Unit “static” 
mass 

Power needs Usage Characteristic Name 

Measurement signal 
bbm ×= &ω  derived from 

discrete differentiator. 

MAG 
simple 

Best possible signal  
is used, see Eq. (4). 

MAG 
best 

Magneto
meter 
LusoSpace 
 [13] 

2*0.3 
kg 

1 W 

Ideal 2-axis rate signal is 
used, see Eq. (4). 

MAG 
ideal 

Se
ns

or
s 

MEMS 
gyros  [14] 

2*0.8 
kg 

4 W Full 3-axis rate 
information is used. 

GYR 
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 Unit “static” 
mass 

Power needs Usage Characteristic Name 

Torquerod 
100 Am2 
 [15] 

3*2.7 
kg 

0.24 A, 50 Ohm Maximal possible torque 
6.5 mN 

MTQ M

Torquerod 
150 
Am2 [15] 

3*2.7 
kg 

0.24 A, 50 Ohm Maximal possible torque 
9.7 mN 

MTQ L 

Torquerod 
700 
Am2 [15] 

3*9.1 
kg 

0.828 A, 54 
Ohm 

Maximal possible torque 
45.3 mN 

MTQ 
XXL 

Maximal possible torque 
69 mN 

THR M 

Ac
tu

at
or

s 

Thrusters 
Bradford 
 [16] 

30.36 
kg dry 
mass  

Power hold 1W; 
Power initiate 
off-on switch 
8W for 0.06 
s;ISP=43 s 

Maximal possible torque 
138 mN 

THR L 

Modeling Assumptions 

All simulations are performed in Matlab/Simulink  [7]. The plant characteristics are 
modeled using Eq. (1)-(5) and the P-controller from Eq. (20). For the Earth magnetic 
field a simple dipole model from  [1] with a dipole parallel to the Earth rotating axis is 
used. 
The orbit is modeled as a perfect circle with 90 deg inclination. 
For the initial conditions, to have the largest possible angular momentum with an initial 
rotation magnitude of 8.67 deg/s parallel to the magnetic field lines.  
Example: Simulation with Different MOI Parameters 

Two simulation runs (Nominal, Nominal+Delta) with exactly the same conditions except 
for different MOI matrices have been performed: 

 
922045380

45170055
380551560

; 
1220520

512005
20560

2
min

2
min mkgImkgI DeltaalNoalNo

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= +  (41)

The result is shown in Figure  3: Even though the MOI parameter changed drastically, 
stability remains and the corresponding rate damping time is even shorter than the one for 
the nominal plant. The reason is that the attitude for the nominal case does no longer 
align the initial rate to the magnetic field lines, since the MOI changed now from 
Nominal to Nominal+Delta. This demonstrates on one hand the robustness of the stability 
and on the other hand the large impact of the initial conditions on the rate damping time. 



 

 16

0 50 100 150 200 250 300
-10

0

10
SC body rate SIM

x 
[d

eg
/s

]

0 50 100 150 200 250 300
-5

0

5

y 
[d

eg
/s

]

0 50 100 150 200 250 300
-10

0

10

z 
[d

eg
/s

]

0 50 100 150 200 250 300
0

5

10

m
ag

 

time [min]

 

 

MOI nominal
MOI nominal+delta
success rate

 
Figure  3. Result of Rate Damping for two different MOI matrices. 

Compiled Simulation Results on Rate Damping Performance and Costs 

Simulations have been performed for 15 different orbit positions, and the average rate 
damping time has been recorded for each sensor/actuator configuration. The results are 
shown in Figure  4. For each torquerod and thruster group two different masses are 
shown, one without extra battery mass (assuming the battery is large enough anyway) 
and one with extra battery mass (assuming that the battery would have to be oversized 
just for the initial rate damping). 
The worst damping times are achieved with “MTQ M” and “MTQ L”, around 1000 min 
and 700 min for the different sensor signals, respectively. Since in this case the smallest 
mass is needed, the Δmass is set to zero. On the other hand, “THR M” and “THR L” give 
the best result in terms of performance, but they require the largest extra mass penalty– 
up to 23 kg. 
The zoom for “MTQ L” (blue solid line zoom frame) shows that there is no improvement 
in the performance when the more complex signal “MAG best” is used instead of “MAG 
simple” – so additional SW effort does not bring any advantage. As expected, the 
reference signal “MAG ideal” gives a slightly better result. The battery mass could cost 
an additional 0.5 kg battery mass penalty. 
As far as the thrusters “THR M” and “THR L” are concerned (black, dashed zoom frame) 
the different MAG signals do not show any difference, when gyros are used instead of 
the MAG signals the rate damping times are halved. 
The “MTQ XXL” (orange dashed dotted zoom frame) the different MAG signals show 
expected order of improvements in rate damping times; gyroscopes generate marginally 
smaller rate damping times. The extra battery mass could cost 1 kg if not foreseen in the 
battery mass budget already. 
 

At this time rate 
damping is completed 
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Figure  4. Average Time for Rate Damping versus Delta Mass for Different Configurations. 
In Figure  5 the rate damping times are plotted wrt to the maximal torque capability. 
Clearly, the higher the torque the smaller becomes the damping time. Figure  6 shows 
that the maximal torque capability is almost inverse proportional to the rate damping time 
if magnetometers are used, regardless if the actuators are thrusters or torquerods. If 
thrusters are used, the change from magnetometers to gyroscopes brings a factor of 2 
improvement. 
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Figure  5. Average Time for Rate Damping versus Torque Capability. 
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Figure  6. Reciprocal Average Time for Rate Damping versus Torque Capability. 

REALIZATION OF RATE DAMPING DESIGN IN AOCS OF THE SWARM MISSION 

The SWARM Mission 

Swarm provides a survey of the geomagnetic field and its temporal evolution  [2]. 
It consists of 3 identical S/C, 2 satellites flying in parallel between 450 km (BOL) and 
300 km (EOL), and 1 satellite at 530 km altitude. With 88° inclination these are near 
polar orbits. 
The nominal attitude has a nadir orientation. Rotation maneuvers of S/C about roll, pitch 
and yaw are used for instrument calibration and orbit Control. The safe mode is Earth-
oriented. Pointing requirements are 2° about all axes, with limitations on use of actuators. 

 
Figure  7. SWARM Satellite 

The S/C have a mass of about 500 kg with inertias of 60, 1200, 1220 kgm² about x,y,z. 
Instruments are mostly mounted on a boom, which after deployment will extend the S/C 
length to 9.3 m. 
The sensors for AOCS are 3 Startracker2 (STR), 1 internal redundant GPS Receiver 
(GPSR), 1 Coarse Earth & Sun Sensor (CESS) with 6 heads placed orthogonal on the S/C 
and 3 Magnetometers (FGM) which can be used for rates up to 0.5 deg/s. As actuators 3 
Magnetic Torquer (MTQ) each 10 Am² and 24 Cold Gas Thruster (THR), of which 2x8 
for attitude control in all 3 axes, each 20 mN force and 2x4 for orbit control, placed in -x 
and +y direction, each 50 mN force. MTQs and THRs are used by each control mode.  
The following control modes are applied: 
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• Rate Damping: rates are measured by the FGMs, main actuation by THR 
• Coarse Pointing: power and thermal safe earth pointing attitude using CESS 
• Fine Pointing: STR and GPSR are used for attitude and position knowledge 
• Orbit Control: similar to FPM, additionally performing slews for instrument 

calibration and for orbit change and maintenance which requires using orbit 
control thruster 

Rate Damping Design 

The RDM controller is a simple proportional controller on the S/C rate with reference 
rate zero. The S/C rate is computed by processing and derivation of the FGM 
measurements.  

 
Figure  8. SWARM Rate Damping Controller 

The controller outputs the torque commands (corresponding to THR M in Table 3) for 
the torquerod and the thruster. A dead band for the thruster inhibits the thruster activation 
for low rates which can be covered by the torquerod. 
Worst Case Test Scenarios With Default Configuration 

The flaw of this design is the miss of the rate measurement about the magnetic field line. 
To test this design in worst case, initial conditions are identified where the change of the 
magnetic field vector is small.  
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Figure  9. Comparison of Results for Rate Damping with SWARM and with Simple Model 

Figure  9 shows on the top plot the result from the simple idealized model used in Figure  
3; after 117 min. the rate is damped below 0.5 deg/s The bottom plot of Figure  9 shows 
the results performed with the complex SWARM model (physics and AOCS) for the 
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same conditions, in which the rate is damped in 97 min. The results are not identical, 
since the inhomogeneous part of the magnetic field model) are very different. 

CONCLUSIONS 

From a control theory point-of-view rate damping with magnetometers using 2-axis 
measurement is as “safe” as with gyroscopes using 3-axis measurement: Global 
asymptotical stability is achieved except for the case when the magnetic field does not 
change. This is only in near-equator orbits possible with perfect field symmetry which is 
in practice not realistic. The result is confirmed by the evaluation of the observability 
criterion where no loss of this property could be detected except for the mentioned case. 
Since SWARM is in a 90 deg inclination orbit, the control concept is “clean”. 
Irrespective of the actuators used, the simulations show that the rate damping times are 
almost inverse proportional to the maximum torque capability: Using thrusters, the 
improvement in rate damping time is a factor of 2 when gyros are used instead of 
magnetometers. 
In general, if rate damping shall be performed fast, then the choice should be a 
gyroscope/thruster configuration. If rate damping shall be performed cheap, a 
magnetometer/torquerod configuration can be an alternative, if the magnetic disturbances 
introduced are acceptable on system level. This result may serve as an input for an 
overall system evaluation on the mission dependent best possible sensor/actuator 
configuration. 
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