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Angular Momentum 
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University of Applied Sciences, Rosenheim, Bavaria, 83024, Germany 

This paper shows a full parametrization non-rest to non-rest slew maneuvers using 
polynomials. A new modelling formulation is developed which on one hand satisfies exactly 
the given boundary conditions as well as the kinematic differential equation of the rotating 
body exactly. The idea is to determine one part of the unknown coefficients by the kinematical 
boundary conditions and to use the other part as free design parameters to shape the dynamic 
in between the boundary conditions. In addition, a least squares problem is formulated in 
order to minimize the angular momentum of the slew. This approach allows optimal slew 
maneuvers as well as low computational need such that an onboard usage is possible.  

I.Nomenclature 

𝐽𝐽  = mass moment of inertia matrix of rigid body in body-fixed frame, [kg_ m2] 
𝜔𝜔𝑏𝑏𝑏𝑏
𝑏𝑏   = rotation of the body frame wrt inertial frame and expressed in the inertial frame, [rad/s] 

𝜏𝜏𝑏𝑏  = torque expressed in body frame, [Nm] 
ℎ𝑏𝑏   = angular momentum expressed in body frame, [Nm] 
𝑡𝑡  = time, [s] 
CMG  = control momentum gyros 
𝑇𝑇𝑏𝑏𝑏𝑏   = transformation matrix from the body-frame into the inertial frame 
𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3  x,y,z-direction unit vector from inertial-frame into the body frame 

II. Introduction 
During missions of Earth observation satellites one important task is to scan predefined spots on the surface as 

shown in Fig. 1. For that purpose the satellite needs to slew from a particular initial attitude, an initial rate velocity 
and a rate acceleration to a final attitude, a final rate velocity and a final rate acceleration [1] for a priori given slew 
time, in order to perform optimal shots with the high precision camera onboard. Attitude control shall be performed 
by CMGs. 

The slews treated here fall in the category of non-rest to non-rest slews. During the search of a suitable profile the 
boundary conditions need to be satisfied as well as a coupled linear matrix differential equation, Eq. (4), needs to be 
solved. There is no general analytical solution available for it. This implies numerical integration and thus time 
consuming computations. This is not what you want during an optimization process. In [1] an analytical solution has 
been derived for a subset of all possible rate profiles. Therefore, optimality cannot be achieved by this solution in 
general.  

This problem is complicated by the fact that the boundary conditions depend on the slew time itself. Due to the 
iterative nature of an overall optimization of the maneuver planning it is desired to find feasible slews which require 
a very low computation time. This is one focus of the presented article. 

In [2] non-rest constraints are considered while the focus is laid on the maximization of a singularity measure on 
the usage of CMGs. The advantage of CMGs is that in principle high torques are available outside of so called 
“singularities”, i.e. certain geometrical constellations of the CMGs when no torque can be generated. In order to 
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minimize the probability of the occurrence of those it is beneficial to use CMGs for short period of times only. Another 
challenge from an intensive usage results in micro vibrations as reported in [3], because CMGs may influence the 
performance of high-sensitivity instruments on-board.  

The possible drawback on this a bit more cautious usage of CMGs is that a global minimal slew time is unlikely 
to reach, because in [4] is shown that for rest-to-rest slews the optimal control signal has a bang-bang structure.  

Therefore, the second focus is to generate slew profiles which naturally avoid torque signals which require 
maximal torque for a long period of time. 

The scope of this article is to derive explicit reference profiles for slews of agile satellites. A reference profile is 
understood as a specific time depending set of torque commands which cause optimal behaviour on the attitude, rate, 
rate acceleration and other potential signals. The corresponding control problem is not treated. 

In detail, all slews shall meet predefined boundary conditions on the dynamic state as well as constraints on the 
commanded input signal: 

1. Starting from an arbitrary attitude 𝑇𝑇0 at slew start the target attitude 𝑇𝑇1 shall be accomplished within the given 
slew time 𝑡𝑡1.  

2. Starting from an arbitrary rate 𝜔𝜔0 at slew start the target rate 𝜔𝜔1 shall be accomplished within the slew time 
𝑡𝑡1.  

3. Starting from an arbitrary rate acceleration �̇�𝜔0 at slew start the target rate acceleration �̇�𝜔1 shall be 
accomplished within the slew time 𝑡𝑡1.  

While taking these constraints into consideration, the amount of angular momentum during the slew shall be 
minimized. 

 

 
Fig. 1 Illustration of a multi-angle observation sequence of PROBA-1 (image from ESA EO-directory 

web-portal). 

A. Main Contributions 
The main contribution of this paper is a full parametrization of non-rest to non-rest slew maneuvers by in total six 

time dependent polynomials, two orientation vectors of the satellite are described by three polynomials each; clearly, 
this case includes rest-to-rest maneuvers as well, because the rate velocity can be selected to be zero and the rate 
acceleration constraint can be omitted. A new modelling formulation is developed which on one hand satisfies exactly 
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the given boundary conditions as well as the kinematic differential equation of the rotating body and on the other hand 
gives an analytical expression of the corresponding rate. For a given freely selectable order of the polynomials the 
general solution of the slew problem is derived.  

In addition, a least squares problem is formulated in order to minimize the angular momentum of the slew. This 
approach allows optimal slew maneuvers as well as low computational need such that onboard usage is possible. 

B. Organization of Paper 
In section C the general idea of the parametrization of the slew dynamics in two separated vector descriptions is 

proposed. Afterwards in section D the given kinematic boundary conditions are translated into the vector boundary 
conditions. Section E demonstrates a general solution for the mapped vector oriented boundary condition. Section IV 
describes the developed Least Squares approach and the paper concludes with a numerical example to demonstrate 
the correctness of the approach. 

III.Parametrization with polynomials satisfying boundary conditions 

The idea of this section is to propose a parametrization which allows the optimizer to freely select tuning 
parameters while guaranteeing at the same time that all boundary conditions are satisfied. 

 
1. Derivation of the kinematic differential equation  

Let us now consider the change of a vector 𝒓𝒓(𝒕𝒕) – which can be imagined as fixed to a body - during a small time 
period ∆𝒕𝒕 within the inertial frame 𝒊𝒊 due to the rotation around vector 𝝎𝝎𝒃𝒃𝒊𝒊

𝒊𝒊 (𝒕𝒕) – the index 𝒊𝒊 is omitted - as shown in 
Fig. 1, which leads to the differential equation Eq. (1),  

Fig. 2 Change of a vector, ∆𝒓𝒓, from 𝒓𝒓(𝒕𝒕) to 𝒓𝒓(𝒕𝒕 + ∆𝒕𝒕) due to rotation around rate vector 𝝎𝝎𝒃𝒃𝒊𝒊
𝒊𝒊 (𝒕𝒕). 

 
�̇�𝑟 = 𝜔𝜔�𝑏𝑏𝑏𝑏𝑏𝑏 ∙ 𝑟𝑟, (1) 

 
in which the 𝜔𝜔�𝑏𝑏𝑏𝑏𝑏𝑏  is the so called “skew-matrix” or “cross product matrix” of vector 𝜔𝜔𝑏𝑏𝑏𝑏

𝑏𝑏 𝑇𝑇 = �𝜔𝜔𝑏𝑏𝑏𝑏 𝑥𝑥
𝑏𝑏  𝜔𝜔𝑏𝑏𝑏𝑏 𝑦𝑦

𝑏𝑏 𝜔𝜔𝑏𝑏𝑏𝑏 𝑧𝑧
𝑏𝑏 � 

and is defined as 
 

𝝎𝝎�𝒃𝒃𝒊𝒊𝒊𝒊 : = �
0 −𝜔𝜔𝑏𝑏𝑏𝑏 𝑧𝑧

𝑏𝑏 +𝜔𝜔𝑏𝑏𝑏𝑏 𝑦𝑦
𝑏𝑏

+𝜔𝜔𝑏𝑏𝑏𝑏 𝑧𝑧
𝑏𝑏 0 −𝜔𝜔𝑏𝑏𝑏𝑏 𝑥𝑥

𝑏𝑏

−𝜔𝜔𝑏𝑏𝑏𝑏 𝑦𝑦
𝑏𝑏 +𝜔𝜔𝑏𝑏𝑏𝑏 𝑥𝑥

𝑏𝑏 0
�. (2) 

 
Note that 𝜔𝜔𝑏𝑏𝑏𝑏

𝑏𝑏 (𝑡𝑡) is the rotation of the body frame wrt inertial frame and expressed in the inertial frame. Now 
consider not only one vector 𝑟𝑟(𝑡𝑡) but three orthonormal vectors 𝑥𝑥𝑏𝑏 ,𝑦𝑦𝑏𝑏 , 𝑧𝑧𝑏𝑏  spanning the body fixed frame vectors 
collected as column vectors in the transformation matrix from the body-frame into the inertial frame, 

 

𝑇𝑇𝑏𝑏𝑏𝑏(𝑡𝑡) = �
| | |

𝑥𝑥𝑏𝑏(𝑡𝑡) 𝑦𝑦𝑏𝑏(𝑡𝑡) 𝑧𝑧𝑏𝑏(𝑡𝑡)
| | |

� (3) 

 
leading from Eq. (1) then to 
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�̇�𝑇𝑏𝑏𝑏𝑏(𝑡𝑡) = 𝜔𝜔�𝑏𝑏𝑏𝑏𝑏𝑏 ∙ 𝑇𝑇𝑏𝑏𝑏𝑏(𝑡𝑡). (4) 
 
Eq. (4) is the so called kinematic differential equation. There are different versions of the kinematic differential 

equation: Exchange of indices 𝑖𝑖, 𝑏𝑏 yields the alternative formulation in the body frame, 
 

�̇�𝑇𝑏𝑏𝑏𝑏(𝑡𝑡) = 𝜔𝜔�𝑏𝑏𝑏𝑏𝑏𝑏 ∙ 𝑇𝑇𝑏𝑏𝑏𝑏(𝑡𝑡) (5) 
 
However, since rates are usually measured w.r.t. the inertial frame the rate 
 

𝜔𝜔𝑏𝑏𝑏𝑏
𝑏𝑏 = −𝜔𝜔𝑏𝑏𝑏𝑏

𝑏𝑏  (6) 
 

is used. This leads to the version used in [2]: 
 

�̇�𝑇𝑏𝑏𝑏𝑏(𝑡𝑡) = −𝝎𝝎�𝒃𝒃𝒊𝒊𝒃𝒃 ∙ 𝑇𝑇𝑏𝑏𝑏𝑏(𝑡𝑡) (7) 
 

2. The original problem statement 
Possible “optimal” slew maneuvers taking into account Eq. (4) are to be derived which satisfy the following 

“physical” boundary conditions, which are predefined: 
a) Attitude boundary conditions 

 
𝑇𝑇𝑏𝑏𝑏𝑏(𝑡𝑡 = 0) = 𝑇𝑇𝑏𝑏 0𝑏𝑏               𝑇𝑇𝑏𝑏𝑏𝑏(𝑡𝑡 = 𝑡𝑡1) = 𝑇𝑇𝑏𝑏 1𝑏𝑏  (8) 

 
b) Rate boundary conditions 

 
𝜔𝜔𝑏𝑏𝑏𝑏
𝑏𝑏 (𝑡𝑡 = 0) = 𝜔𝜔𝑏𝑏𝑏𝑏0 

𝑏𝑏               𝜔𝜔𝑏𝑏𝑏𝑏
𝑏𝑏 (𝑡𝑡 = 𝑡𝑡1) = 𝜔𝜔𝑏𝑏𝑏𝑏1 

𝑏𝑏  (9) 
 
c) Rate acceleration boundary conditions 

 
�̇�𝜔𝑏𝑏𝑏𝑏
𝑏𝑏 (𝑡𝑡 = 0) = �̇�𝜔𝑏𝑏𝑏𝑏0 

𝑏𝑏               �̇�𝜔𝑏𝑏𝑏𝑏
𝑏𝑏 (𝑡𝑡 = 𝑡𝑡1) = �̇�𝜔𝑏𝑏𝑏𝑏1 

𝑏𝑏  (10) 
 
Qualitatively, a slew is “optimal”, if the torque is large for small instances of time only.  
 

3. Notation of the kinematic differential equation in terms of row vectors 
The transformation matrix 𝑇𝑇𝑏𝑏𝑏𝑏(𝑡𝑡) is now expressed in terms of its row vectors, 
 

𝑇𝑇𝑏𝑏𝑏𝑏 = �
− 𝑣𝑣1𝑇𝑇 −
− 𝑣𝑣2𝑇𝑇 −
− 𝑣𝑣3𝑇𝑇 −

� (11) 

 
and its derivative is then 

 

𝑇𝑇𝑏𝑏𝑏𝑏 = �
− 𝑣𝑣1𝑇𝑇 −
− 𝑣𝑣2𝑇𝑇 −
− 𝑣𝑣3𝑇𝑇 −

�. (12) 

 
Multiplying Eq. (4) on both sides from the right with 𝑇𝑇𝑏𝑏𝑏𝑏

𝑇𝑇leads to  
 

�̇�𝑇𝑏𝑏𝑏𝑏 ∙ 𝑇𝑇𝑏𝑏𝑏𝑏 = �
− 𝑣𝑣1̇𝑇𝑇 −
− 𝑣𝑣2̇𝑇𝑇 −
− 𝑣𝑣3̇𝑇𝑇 −

� ∙ [𝑣𝑣1 𝑣𝑣2 𝑣𝑣3] = �
𝑣𝑣1̇𝑇𝑇 ∙ 𝑣𝑣1 𝑣𝑣1̇𝑇𝑇 ∙ 𝑣𝑣2 𝑣𝑣1̇𝑇𝑇 ∙ 𝑣𝑣3
𝑣𝑣2̇𝑇𝑇 ∙ 𝑣𝑣1 𝑣𝑣2̇𝑇𝑇 ∙ 𝑣𝑣2 𝑣𝑣2̇𝑇𝑇 ∙ 𝑣𝑣3
𝑣𝑣3̇𝑇𝑇 ∙ 𝑣𝑣1 𝑣𝑣3̇𝑇𝑇 ∙ 𝑣𝑣2 𝑣𝑣3̇𝑇𝑇 ∙ 𝑣𝑣3

� = 𝜔𝜔� (13) 

 
while the indices of the rate vector are from now on omitted. 

Since the vectors of a transformation matrix are mutual perpendicular to each other and have unity length, the 
following equations hold: 
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𝑣𝑣𝑏𝑏𝑇𝑇 ∙ 𝑣𝑣𝑏𝑏 = 1 →
𝑑𝑑(𝑣𝑣𝑏𝑏𝑇𝑇 ∙ 𝑣𝑣𝑏𝑏)

𝑑𝑑𝑡𝑡
= 𝑣𝑣�̇�𝚤𝑇𝑇 ∙ 𝑣𝑣𝑏𝑏 + 𝑣𝑣𝑏𝑏𝑇𝑇 ∙ 𝑣𝑣�̇�𝚤 = 2𝑣𝑣�̇�𝚤𝑇𝑇 ∙ 𝑣𝑣𝑏𝑏 = 0 (14) 

 

𝑣𝑣𝑏𝑏𝑇𝑇 ∙ 𝑣𝑣𝑗𝑗 = 0 →
𝑑𝑑�𝑣𝑣𝑏𝑏𝑇𝑇 ∙ 𝑣𝑣𝑗𝑗�

𝑑𝑑𝑡𝑡
= 𝑣𝑣�̇�𝚤𝑇𝑇 ∙ 𝑣𝑣𝑗𝑗 + 𝑣𝑣𝑏𝑏𝑇𝑇 ∙ 𝑣𝑣�̇�𝚥 = 0 → 𝑣𝑣�̇�𝚤𝑇𝑇 ∙ 𝑣𝑣𝑗𝑗 = −𝑣𝑣𝑏𝑏𝑇𝑇 ∙ 𝑣𝑣�̇�𝚥. 

 
(15) 

 
Using Eqs. (13)-(15) and (2) yields 
 

�
0 �̇�𝑣1𝑇𝑇 ∙ 𝑣𝑣2 �̇�𝑣1𝑇𝑇 ∙ 𝑣𝑣3

�̇�𝑣2𝑇𝑇 ∙ 𝑣𝑣1 0 �̇�𝑣2𝑇𝑇 ∙ 𝑣𝑣3
�̇�𝑣3𝑇𝑇 ∙ 𝑣𝑣1 �̇�𝑣3𝑇𝑇 ∙ 𝑣𝑣2 0

� = �
0 −𝜔𝜔𝑧𝑧 +𝜔𝜔𝑦𝑦

+𝜔𝜔𝑧𝑧 0 −𝜔𝜔𝑥𝑥
−𝜔𝜔𝑦𝑦 +𝜔𝜔𝑥𝑥 0

�, (16) 

leading to 

𝜔𝜔 = �
𝜔𝜔𝑥𝑥
𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧
� = �

�̇�𝑣3𝑇𝑇 ∙ 𝑣𝑣2 = −�̇�𝑣2𝑇𝑇 ∙ 𝑣𝑣3
�̇�𝑣1𝑇𝑇 ∙ 𝑣𝑣3 = −�̇�𝑣3𝑇𝑇 ∙ 𝑣𝑣1
�̇�𝑣2𝑇𝑇 ∙ 𝑣𝑣1 = −�̇�𝑣1𝑇𝑇 ∙ 𝑣𝑣2

� (17) 

and for the rate acceleration 

�̇�𝜔 = �
�̇�𝜔𝑥𝑥
�̇�𝜔𝑦𝑦
�̇�𝜔𝑧𝑧
� = �

�̈�𝑣3𝑇𝑇 ∙ 𝑣𝑣2 + �̇�𝑣3𝑇𝑇 ∙ �̇�𝑣2 = −�̈�𝑣2𝑇𝑇 ∙ 𝑣𝑣3 − �̇�𝑣2𝑇𝑇 ∙ �̇�𝑣3
�̈�𝑣1𝑇𝑇 ∙ 𝑣𝑣3 + �̇�𝑣1𝑇𝑇 ∙ �̇�𝑣3 = −�̈�𝑣3𝑇𝑇 ∙ 𝑣𝑣1 − �̇�𝑣3𝑇𝑇 ∙ �̇�𝑣1
�̈�𝑣2𝑇𝑇 ∙ 𝑣𝑣1 + �̇�𝑣2𝑇𝑇 ∙ �̇�𝑣1 = −�̈�𝑣1𝑇𝑇 ∙ 𝑣𝑣2 − �̇�𝑣1𝑇𝑇 ∙ �̇�𝑣2

�. (18) 

 
Reverting the logic of the derivation from above one may come to the conclusion: Any rate vector 𝜔𝜔(𝑡𝑡) which can 

be expressed in its components by the scalar products of the vectors given in Eq. (17) has “automatically” the solution 
𝑇𝑇𝑏𝑏𝑏𝑏(𝑡𝑡) given in Eq. (11). This is the basic idea of the parametrization: Suitable vector couples 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3 are defined 
which define at the same time the corresponding rate vector 𝜔𝜔: Then, the kinematic differential equation in Eq. (2) is 
solved exactly without the need of numerical integration. 

Note that this parametrization can also be performed in the body frame using the corresponding kinematic 
differential equation in body frame in Eq. (7). 

 
4. Defining suitable vector triples 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3-parametrization solving the kinematic differential equation 

The idea is to express vector 𝑣𝑣1 component wise as polynomials with coefficients to be determined and a 
polynomial order 𝑛𝑛 to be selected: 

 

𝑣𝑣1𝑇𝑇 =
�̅�𝑣1𝑇𝑇

|�̅�𝑣1| =
[�̅�𝑣1𝑥𝑥 �̅�𝑣1𝑦𝑦 �̅�𝑣1𝑧𝑧]

�(�̅�𝑣1𝑥𝑥)2 + ��̅�𝑣1𝑦𝑦�
2 + (�̅�𝑣1𝑧𝑧)2

and for 𝑖𝑖 = 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 (19) 

 

�̅�𝑣1𝑏𝑏 ≔ 𝑐𝑐1𝑏𝑏 0 ∙ 𝑡𝑡0 + 𝑐𝑐1𝑏𝑏 1 ∙ 𝑡𝑡1 + ⋯𝑐𝑐1𝑏𝑏 𝑛𝑛 ∙ 𝑡𝑡𝑛𝑛 = [𝑡𝑡𝑛𝑛 𝑡𝑡𝑛𝑛−1  … 𝑡𝑡2 𝑡𝑡1 𝑡𝑡0]�������������������
=: ℎ𝑇𝑇

∙

⎣
⎢
⎢
⎢
⎡
𝑐𝑐1𝑏𝑏 𝑛𝑛
𝑐𝑐1𝑏𝑏 𝑛𝑛−1

:
𝑐𝑐1𝑏𝑏 1
𝑐𝑐1𝑏𝑏 0 ⎦

⎥
⎥
⎥
⎤

�����
=:𝑐𝑐1𝑖𝑖 

= ℎ𝑇𝑇 ∙ 𝑐𝑐1𝑏𝑏  
 

(20) 

 
�̇̅�𝑣1𝑏𝑏 = ℎ̇𝑇𝑇 ∙ 𝑐𝑐1𝑏𝑏 = [𝑛𝑛𝑡𝑡𝑛𝑛−1 (𝑛𝑛 − 1)𝑡𝑡𝑛𝑛−2  … 2𝑡𝑡1 1 0]�������������������������

=: ℎ̇𝑇𝑇
∙ 𝑐𝑐1𝑏𝑏  

 
(21) 

 
�̈̅�𝑣1𝑏𝑏 = ℎ̈𝑇𝑇 ∙ 𝑐𝑐1𝑏𝑏 = [(𝑛𝑛 − 1)𝑛𝑛𝑡𝑡𝑛𝑛−2 (𝑛𝑛 − 2)(𝑛𝑛 − 1)𝑡𝑡𝑛𝑛−3  … 2 0 0]���������������������������������

=: ℎ̈𝑇𝑇
∙ 𝑐𝑐1𝑏𝑏  

 
(22) 

 
Note that vectors 𝑣𝑣1 and �̅�𝑣1 point into the same direction. The time vector ℎ has the dimension 𝑛𝑛 𝑥𝑥 1. 
Similar vector 𝑣𝑣2 is defined to be perpendicular to vector 𝑣𝑣1 using the skew matrix of �̅�𝑣1: 
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𝑣𝑣2𝑇𝑇 =
�̅�𝑣2𝑇𝑇

�(�̅�𝑣2𝑥𝑥)2 + ��̅�𝑣2𝑦𝑦�
2 + (�̅�𝑣2𝑧𝑧)2

 

 

�̅�𝑣2 = 𝛼𝛼 ∙ �
0

+�̅�𝑣1𝑧𝑧
−�̅�𝑣1𝑦𝑦

� + 𝛽𝛽 ∙ �
+�̅�𝑣1𝑧𝑧

0
−�̅�𝑣1𝑥𝑥

� + 𝛾𝛾 ∙ �
+�̅�𝑣1𝑦𝑦
−�̅�𝑣1𝑥𝑥

0
� = �̅�𝑣1� ∙ �

𝛼𝛼
𝛽𝛽
𝛾𝛾
�

�
=:𝛿𝛿

 

 
 
 
 

(23) 

 
Clearly, the scalar product �̅�𝑣1𝑇𝑇 ∙ �̅�𝑣2 = �̅�𝑣1𝑇𝑇 ∙ �̅�𝑣�1 ∙ 𝛿𝛿 = 0 for any vector 𝛿𝛿. The values 𝛼𝛼, 𝛽𝛽, 𝛾𝛾 are expressed again by 

time dependent polynomials with coefficients 𝑐𝑐𝛼𝛼 , 𝑐𝑐𝛽𝛽 , 𝑐𝑐𝛾𝛾  to be determined: 
 

𝛼𝛼(𝑡𝑡): = ℎ(𝑡𝑡)𝑇𝑇 ∙ 𝑐𝑐𝛼𝛼           𝛽𝛽(𝑡𝑡): = ℎ(𝑡𝑡)𝑇𝑇 ∙ 𝑐𝑐𝛽𝛽           𝛾𝛾(𝑡𝑡): = ℎ(𝑡𝑡)𝑇𝑇 ∙ 𝑐𝑐𝛾𝛾  (24) 
 
The third vector 𝑣𝑣3 does not contain any degree of freedom and simply follows the right-hand-rule: 
 

𝑣𝑣3 = 𝑣𝑣�1 ∙ 𝑣𝑣2 (25) 
 

�̇�𝑣3 = 𝑣𝑣�̇1 ∙ 𝑣𝑣2 + 𝑣𝑣�1 ∙ �̇�𝑣2 (26) 

 
�̈�𝑣3 = 𝑣𝑣�̈1 ∙ 𝑣𝑣2 + 𝑣𝑣�̇1 ∙ �̇�𝑣2 + 𝑣𝑣�̇1 ∙ �̇�𝑣2 + 𝑣𝑣�1 ∙ �̈�𝑣2 = 𝑣𝑣�̈1 ∙ 𝑣𝑣2 + 2𝑣𝑣�̇1 ∙ �̇�𝑣2 + 𝑣𝑣�1 ∙ �̈�𝑣2 (27) 

 
Now, the physical boundary conditions on attitude, rate and rate acceleration need to be taken into account from 

the vector couples 𝑣𝑣1, 𝑣𝑣2, in which the coefficients 𝑐𝑐1𝑥𝑥 , 𝑐𝑐1𝑦𝑦 𝑐𝑐1𝑧𝑧  and 𝑐𝑐𝛼𝛼 , 𝑐𝑐𝛽𝛽 , 𝑐𝑐𝛾𝛾 , respectively, need to be determined. 

C. Mapping of physical boundary conditions into vector boundary conditions 
5. Mapping of attitude boundary conditions into �̅�𝑣1(0), �̅�𝑣1(𝑡𝑡1) and 𝛿𝛿(0), 𝛿𝛿(𝑡𝑡1)  

The attitude at slew start and slew end is predefined: 
 

𝑇𝑇𝑏𝑏𝑏𝑏(𝑡𝑡 = 0) = 𝑇𝑇𝑏𝑏 0
𝑏𝑏 = �

− 𝑣𝑣10𝑇𝑇 −
− 𝑣𝑣20𝑇𝑇 −
− 𝑣𝑣30𝑇𝑇 −

� (28) 

 

𝑇𝑇𝑏𝑏𝑏𝑏(𝑡𝑡 = 𝑡𝑡1) = 𝑇𝑇𝑏𝑏 1
𝑏𝑏 = �

− 𝑣𝑣11𝑇𝑇 −
− 𝑣𝑣21𝑇𝑇 −
− 𝑣𝑣31𝑇𝑇 −

� 
 

(29) 

 
Thus, the initial and the final value – index 0 and index 1, respectively, of vector 𝑣𝑣1 is fixed: 
 

�̅�𝑣10𝑇𝑇 = 𝑣𝑣10𝑇𝑇 = 𝑇𝑇𝑏𝑏 0
𝑏𝑏 (1, : ) (30) 

 
�̅�𝑣11𝑇𝑇 = 𝑣𝑣11𝑇𝑇 = 𝑇𝑇𝑏𝑏 1

𝑏𝑏 (1, : ). 
 

(31) 
 
The same holds for vector 𝑣𝑣2, but for this vector the boundary values of 𝛿𝛿 need to be determined: 
 

�̅�𝑣2(𝑡𝑡 = 0) = 𝑣𝑣20 = �̅�𝑣�10 ∙ 𝛿𝛿0 = 𝑣𝑣�10𝛿𝛿0 (32) 
 
Since 𝑣𝑣20 is perpendicular to 𝑣𝑣10, one particular solution vector 𝛿𝛿0𝑝𝑝 is 𝛿𝛿0𝑝𝑝 = −𝑣𝑣30 from the right hand rule. Since 

matrix 𝑣𝑣�10 has a loss of rank from the zeros in the main diaogonal, vector 𝛿𝛿0 cannot uniquely be determined. There is 
one degree of freedom in it: An arbitrary contribution 𝜒𝜒13 from 𝑣𝑣10, the so called null-space matrix (here: null space 
vector) of matrix 𝑣𝑣�10, can be added to vector 𝛿𝛿0 without violating Eq. (32): 

 
𝑣𝑣20 = 𝑣𝑣�10 ∙ 𝛿𝛿0 = 𝑣𝑣�10 ∙ �𝛿𝛿0𝑝𝑝 + 𝜒𝜒1 ∙ 𝑣𝑣10� = 𝑣𝑣�10(−𝑣𝑣30 + 𝜒𝜒13 ∙ 𝑣𝑣10) (33) 

 



AIAA SciTech Forum 
23-27 January 2023, National Harbor, MD & Online  DOI 10.2514/6.2023-2173 
AIAA SCITECH 2023 Forum 

7 
 

Thus, for the initial and the final values of coefficient vector 𝛿𝛿(𝑡𝑡) the following boundary conditions hold: 
 

𝛿𝛿0 = 𝛿𝛿0𝑝𝑝 + 𝜒𝜒13 ∙ 𝑣𝑣10 with 𝛿𝛿0𝑝𝑝 = −𝑣𝑣30, (34) 
 

𝛿𝛿1 = 𝛿𝛿1𝑝𝑝 + 𝜒𝜒14 ∙ 𝑣𝑣10 with 𝛿𝛿1𝑝𝑝 = −𝑣𝑣31. 
 

(35) 
 

6. Mapping of rate boundary conditions into �̇̅�𝑣1(0), �̇̅�𝑣1(𝑡𝑡1)  and �̇�𝛿(0), �̇�𝛿(𝑡𝑡1) 
In the first glance, from Eq. (17) the connection can be derived for the initial condition in y, z- component of rate 

𝜔𝜔 and vector 𝑣𝑣1̇ but not �̇̅�𝑣1: 
 

�
𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧� = �+𝑣𝑣3

𝑇𝑇 ∙ �̇�𝑣1
−𝑣𝑣2𝑇𝑇 ∙ �̇�𝑣1

� = �+𝑣𝑣3
𝑇𝑇

−𝑣𝑣2𝑇𝑇
� ∙ �̇�𝑣1 (36) 

 
From Eq. (19) the derivative 𝑣𝑣1̇ can computed in general at start using with |�̅�𝑣1| = 1: 
 

𝑣𝑣1 =
�̅�𝑣1

|�̅�𝑣1| (37) 

 

𝑣𝑣1̇ = ��̇̅�𝑣1 ∙ |�̅�𝑣1| − �̅�𝑣1 ∙ |�̅�𝑣1|̇ �
|�̅�𝑣1|2�  

 
(38) 

 

|�̅�𝑣1|̇ ≔
𝑑𝑑|�̅�𝑣1|
𝑑𝑑𝑡𝑡

=
𝑑𝑑
𝑑𝑑𝑡𝑡
��̅�𝑣1𝑇𝑇�̅�𝑣1 =

1

2��̅�𝑣1𝑇𝑇�̅�𝑣1
∙ 2�̅�𝑣1𝑇𝑇�̇̅�𝑣1

�̅�𝑣1𝑇𝑇�̇̅�𝑣1
��̅�𝑣1𝑇𝑇�̅�𝑣1

∙ 
 

(39) 

 

�̇�𝑣10 = �̇̅�𝑣10 − �̅�𝑣10 ∙ �̅�𝑣10𝑇𝑇�̇̅�𝑣10 = �𝐸𝐸 − �̅�𝑣10 ∙ �̅�𝑣10𝑇𝑇� ∙ �̇̅�𝑣10          𝐸𝐸 ≔ �
1 0 0
0 1 0
0 0 1

� 
 

(40) 

 
Note that vectors 𝑣𝑣1̇ and �̇̅�𝑣1 do not point in general into the same direction. 
Inserting Eq. (38) into Eq. (36) and reminding that 𝑣𝑣3𝑇𝑇 ∙ �̅�𝑣1 = 𝑣𝑣3𝑇𝑇 ∙ �̅�𝑣1 = 0 gives  
 

�
𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧� = �+𝑣𝑣3

𝑇𝑇

−𝑣𝑣2𝑇𝑇
� ∙ ��̇̅�𝑣1 ∙

|�̅�𝑣1| − �̅�𝑣1 ∙ |�̅�𝑣1|̇ �
|�̅�𝑣1|2� = �+𝑣𝑣3

𝑇𝑇

−𝑣𝑣2𝑇𝑇
� ∙ (�̇̅�𝑣1)

|�̅�𝑣1|� . (41) 

 
At 𝑡𝑡 = 0 and 𝑡𝑡 = 𝑡𝑡1 the values of �̅�𝑣1 are selected to be one, otherwise the initial and final attitude condition could 

not be satisfied. Then, Eq. (41) turns into 
 

�
𝜔𝜔𝑦𝑦0
𝜔𝜔𝑧𝑧0

� = �+𝑣𝑣30
𝑇𝑇

−𝑣𝑣20𝑇𝑇
� ∙ �̇̅�𝑣10 (42) 

 
From Eq. (42), the unknown initial vector �̇̅�𝑣10 can be determined. A particular solution for �̇̅�𝑣10, �̇̅�𝑣10 𝑝𝑝, is  
 

�̇̅�𝑣10 𝑝𝑝 = [+𝑣𝑣30 −𝑣𝑣20] �
𝜔𝜔𝑦𝑦0
𝜔𝜔𝑧𝑧0

� (43) 

 
The general solution including the null space vector is then at start and end 
 

�̇̅�𝑣10 = �̇̅�𝑣10 𝑝𝑝 + 𝜒𝜒1 ∙ 𝑣𝑣10 (44) 
 

�̇̅�𝑣11 = �̇̅�𝑣11 𝑝𝑝 + 𝜒𝜒4 ∙ 𝑣𝑣11 
 

(45) 
 

with 
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�̇̅�𝑣11 𝑝𝑝 = [+𝑣𝑣31 −𝑣𝑣21] �
𝜔𝜔𝑦𝑦1
𝜔𝜔𝑧𝑧1

� (46) 

 
To cover the initial x-rate component vector �̇�𝑣2 in Eq. (17) needs to be determined: 
 

𝜔𝜔𝑥𝑥 = −𝑣𝑣3𝑇𝑇 ∙ �̇�𝑣2 (47) 
 
The derivative �̇�𝑣2 can be determined as in Eq. (38) 
 

𝑣𝑣2̇ = (�̇̅�𝑣2 ∙ |�̅�𝑣2| − �̅�𝑣2 ∙ |�̅�𝑣2|̇ )
|�̅�𝑣2|2�  (48) 

 
and inserting in Eq. (47) gives 

 

𝜔𝜔𝑥𝑥 = −𝑣𝑣3𝑇𝑇 ∙
(�̇̅�𝑣2)

|�̅�𝑣2|�  (49) 

 
Vector �̇̅�𝑣2 is computed from Eq. (23): 

 
�̅�𝑣2 = �̅�𝑣�1 ∙ 𝛿𝛿 (50) 

 
�̇̅�𝑣2 = �̅�𝑣�̇1 ∙ 𝛿𝛿 + �̅�𝑣�1 ∙ �̇�𝛿 

 
(51) 

 
and for completeness 

 
�̈̅�𝑣2 = �̅�𝑣�̈1 ∙ 𝛿𝛿 + �̅�𝑣�̇1 ∙ �̇�𝛿 + �̅�𝑣�̇1 ∙ �̇�𝛿 + �̅�𝑣�1 ∙ �̈�𝛿 = �̅�𝑣�̈1 ∙ 𝛿𝛿 + 2�̅�𝑣�̇1 ∙ �̇�𝛿 + �̅�𝑣�1 ∙ �̈�𝛿. (52) 

 
At the boundaries Eq. (49) turns with Eq. (51) into 
 

𝜔𝜔𝑥𝑥0 = −𝑣𝑣30𝑇𝑇 ∙ �̇̅�𝑣20 = −𝑣𝑣30𝑇𝑇(�̅�𝑣�̇10 ∙ 𝛿𝛿0 + �̅�𝑣�10 ∙ �̇�𝛿0 ∙ �̇�𝛿0) (53) 
 
Rearranging for the only unknown variable �̇�𝛿0 yields 
 

𝜔𝜔𝑥𝑥0 + 𝑣𝑣30𝑇𝑇�̅�𝑣�̇10𝛿𝛿0 = −𝑣𝑣30𝑇𝑇�̅�𝑣�10 ∙ �̇�𝛿0 (54) 
 
From Eq. (54) the unknown initial vector �̇�𝛿0 can be determined. Because −𝑣𝑣30𝑇𝑇�̅�𝑣�10 = −𝑣𝑣20𝑇𝑇 a particular solution 

for �̇�𝛿0, �̇�𝛿0 𝑝𝑝1, is gained by using Eqs. (34), (43) and (44); additionally, all terms involving scalar products with vectors 
perpendicular to each other are removed: 

 
�̇�𝛿0 𝑝𝑝1  = −𝑣𝑣20 ∙ �𝜔𝜔𝑥𝑥0 + 𝑣𝑣30𝑇𝑇�̅�𝑣�̇10 𝛿𝛿0� = −𝑣𝑣20 ∙ �𝜔𝜔𝑥𝑥0 + 𝑣𝑣30𝑇𝑇 ��̇̅�𝑣10𝑝𝑝 + 𝜒𝜒1 ∙ 𝑣𝑣10� � (−𝑣𝑣30 + 𝜒𝜒13 ∙ 𝑣𝑣10)� 

�̇�𝛿0 𝑝𝑝1  = −𝑣𝑣20 ∙ �𝜔𝜔𝑥𝑥0 + 𝑣𝑣30𝑇𝑇 �[+𝑣𝑣30 −𝑣𝑣20] �
𝜔𝜔𝑦𝑦0
𝜔𝜔𝑧𝑧0

� + 𝜒𝜒1 ∙ 𝑣𝑣10
�

� (−𝑣𝑣30 + 𝜒𝜒13 ∙ 𝑣𝑣10)� 

�̇�𝛿0 𝑝𝑝1  = −𝑣𝑣20 ∙ �𝜔𝜔𝑥𝑥0 + 𝑣𝑣30𝑇𝑇�𝜔𝜔𝑦𝑦0 ∙ 𝑣𝑣�30 − 𝜔𝜔𝑧𝑧0 ∙ 𝑣𝑣�20 + 𝜒𝜒1 ∙ 𝑣𝑣�10�(−𝑣𝑣30 + 𝜒𝜒13 ∙ 𝑣𝑣10)� 
�̇�𝛿0 𝑝𝑝1  = −𝑣𝑣20 ∙ �𝜔𝜔𝑥𝑥0 + 𝑣𝑣30𝑇𝑇(−𝜔𝜔𝑧𝑧0 ∙ 𝑣𝑣�20 + 𝜒𝜒1 ∙ 𝑣𝑣�10)(+𝜒𝜒13 ∙ 𝑣𝑣10)� = −𝑣𝑣20 ∙ �𝜔𝜔𝑥𝑥0 + 𝑣𝑣30𝑇𝑇(𝜔𝜔𝑧𝑧0𝜒𝜒13 ∙ 𝑣𝑣30)� 
�̇�𝛿0 𝑝𝑝1  = −𝑣𝑣20 ∙ (𝜔𝜔𝑥𝑥0 + 𝜔𝜔𝑧𝑧0 ∙ 𝜒𝜒13) 

(55) 

 
Thus, this particular solution �̇�𝛿0 𝑝𝑝1 also depends on the attitude boundary condition involving 𝜒𝜒13.  
The null space matrix of −𝑣𝑣30𝑇𝑇�̅�𝑣�10 in Eq. (55) consists of the vectors 𝑣𝑣10 and 𝑣𝑣30.For the complete and general 

solution the particular solution �̇�𝛿0 𝑝𝑝1is split in �̇�𝛿0 𝑝𝑝 = −𝜔𝜔𝑥𝑥0 ∙ 𝑣𝑣20 and the part with 𝜒𝜒13 , −𝑣𝑣20 ∙ 𝜔𝜔𝑧𝑧0 ∙ 𝜒𝜒13, is included 
in matrix 𝐷𝐷10 and 𝐷𝐷10, respectively, leading to 
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�̇�𝛿0 = �̇�𝛿0𝑝𝑝 + 𝐷𝐷10 ∙ �
𝜒𝜒2
𝜒𝜒3
𝜒𝜒13

�           �̇�𝛿0𝑝𝑝 = −𝜔𝜔𝑥𝑥0 ∙ 𝑣𝑣20          𝐷𝐷10 = [𝑣𝑣10 𝑣𝑣30 −𝜔𝜔𝑧𝑧0 ∙ 𝑣𝑣20] (56) 

 

�̇�𝛿1 = �̇�𝛿1𝑝𝑝 + 𝐷𝐷11 ∙ �
𝜒𝜒5
𝜒𝜒6
𝜒𝜒14

�           �̇�𝛿1𝑝𝑝 = −𝜔𝜔𝑥𝑥1 ∙ 𝑣𝑣21           𝐷𝐷11 = [𝑣𝑣11 𝑣𝑣31 −𝜔𝜔𝑧𝑧1 ∙ 𝑣𝑣21] 
 

(57) 

 
7. Mapping of rate acceleration boundary conditions into �̈̅�𝑣1(0), �̈̅�𝑣1(𝑡𝑡1) and �̈�𝛿(0), �̈�𝛿(𝑡𝑡1) 

The derivative of the rate signal 𝜔𝜔(𝑡𝑡) in Eq. (18) forms the connection from the physical boundary conditions: 
 

𝜔𝜔 = �
𝜔𝜔𝑥𝑥
𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧
� = �

�̇�𝑣3𝑇𝑇 ∙ 𝑣𝑣2 = −�̇�𝑣2𝑇𝑇 ∙ 𝑣𝑣3
�̇�𝑣1𝑇𝑇 ∙ 𝑣𝑣3 = −�̇�𝑣3𝑇𝑇 ∙ 𝑣𝑣1
�̇�𝑣2𝑇𝑇 ∙ 𝑣𝑣1 = −�̇�𝑣1𝑇𝑇 ∙ 𝑣𝑣2

�, (58) 

 

�̇�𝜔 = �
�̇�𝜔𝑥𝑥
�̇�𝜔𝑦𝑦
�̇�𝜔𝑧𝑧
� = �

�̈�𝑣3𝑇𝑇 ∙ 𝑣𝑣2 + �̇�𝑣3𝑇𝑇 ∙ �̇�𝑣2 = −�̈�𝑣2𝑇𝑇 ∙ 𝑣𝑣3 − �̇�𝑣2𝑇𝑇 ∙ �̇�𝑣3
�̈�𝑣1𝑇𝑇 ∙ 𝑣𝑣3 + �̇�𝑣1𝑇𝑇 ∙ �̇�𝑣3 = −�̈�𝑣3𝑇𝑇 ∙ 𝑣𝑣1 − �̇�𝑣3𝑇𝑇 ∙ �̇�𝑣1
�̈�𝑣2𝑇𝑇 ∙ 𝑣𝑣1 + �̇�𝑣2𝑇𝑇 ∙ �̇�𝑣1 = −�̈�𝑣1𝑇𝑇 ∙ 𝑣𝑣2 − �̇�𝑣1𝑇𝑇 ∙ �̇�𝑣2

�. 
 

(59) 

 
Since 𝑣𝑣3 involves more expressions from Eq. (59) the following rate acceleration component-combination is used: 
 

�̇�𝜔 = �
�̇�𝜔𝑥𝑥
�̇�𝜔𝑦𝑦
�̇�𝜔𝑧𝑧
� = �

−𝑣𝑣3𝑇𝑇 ∙ �̈�𝑣2 − �̇�𝑣2𝑇𝑇 ∙ �̇�𝑣3
+𝑣𝑣3𝑇𝑇 ∙ �̈�𝑣1 + �̇�𝑣1𝑇𝑇 ∙ �̇�𝑣3
−𝑣𝑣2𝑇𝑇 ∙ �̈�𝑣1 − �̇�𝑣1𝑇𝑇 ∙ �̇�𝑣2

� (60) 

 
The initial rate acceleration conditions are  
 

�
�̇�𝜔𝑥𝑥0
�̇�𝜔𝑦𝑦0
�̇�𝜔𝑧𝑧0

� = �
−𝑣𝑣30𝑇𝑇 ∙ �̈�𝑣20 − �̇�𝑣20𝑇𝑇 ∙ �̇�𝑣30
+𝑣𝑣30𝑇𝑇 ∙ �̈�𝑣10 + �̇�𝑣10𝑇𝑇 ∙ �̇�𝑣30
−𝑣𝑣20𝑇𝑇 ∙ �̈�𝑣10 − �̇�𝑣10𝑇𝑇 ∙ �̇�𝑣20

�. (61) 

 
Solving Eq. (61) for vector �̈�𝑣10 yields 
 

�
�̇�𝜔𝑦𝑦0 − �̇�𝑣10𝑇𝑇 ∙ �̇�𝑣30
�̇�𝜔𝑧𝑧0 + �̇�𝑣10𝑇𝑇 ∙ �̇�𝑣20

� = �+𝑣𝑣30
𝑇𝑇

−𝑣𝑣20𝑇𝑇
� �̈�𝑣10. (62) 

 
In order to get an expression for �̈̅�𝑣10 instead of �̈�𝑣10 the derivatives �̈�𝑣1 are computed from Eq. (38): 
 

�̇�𝑣1 =
1

|�̅�𝑣1|2 ∙ ��̇̅�𝑣1 ∙
|�̅�𝑣1| − �̅�𝑣1 ∙ |�̅�𝑣1|̇ � (63) 

 

�̈�𝑣1 =
1

|�̅�𝑣1|4 ∙ ���̅�𝑣1̈ ∙
|�̅�𝑣1| + �̇̅�𝑣1 ∙ |�̅�𝑣1|̇ − �̇̅�𝑣1 ∙ |�̅�𝑣1|̇ − �̅�𝑣1 ∙ |�̅�𝑣1|̈ �|�̅�𝑣1|2 − (�̇̅�𝑣1 ∙ |�̅�𝑣1| − �̅�𝑣1 ∙ |�̅�𝑣1|̇ )2|�̅�𝑣1||�̅�𝑣1|̇ � 

�̈�𝑣1 =
1

|�̅�𝑣1|4 ∙ ��̅�𝑣1̈ ∙
|�̅�𝑣1|3 − �̇̅�𝑣1 ∙ 2|�̅�𝑣1|2|�̅�𝑣1|̇ + �̅�𝑣1 ∙ (2|�̅�𝑣1̇|2|�̅�𝑣1| − |�̅�𝑣1|̈ |�̅�𝑣1|2� 

 
 
 

(64) 

 
and using Eq. (39) 

 

�̈�𝑣1 =
1

|�̅�𝑣1|4 ∙ ��̅�𝑣1̈ ∙
|�̅�𝑣1|3 − �̇̅�𝑣1 ∙ 2|�̅�𝑣1|2

�̅�𝑣1𝑇𝑇�̇̅�𝑣1
��̅�𝑣1𝑇𝑇�̅�𝑣1

+ �̅�𝑣1 ∙ (2
��̅�𝑣1𝑇𝑇�̇̅�𝑣1�

2

��̅�𝑣1𝑇𝑇�̅�𝑣1
− |�̅�𝑣1|̈ |�̅�𝑣1|2)� (65) 

 
with its initial values 
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�̈�𝑣10 = ��̈̅�𝑣10 − �̇̅�𝑣10 ∙ 2�̅�𝑣10𝑇𝑇�̇̅�𝑣10 + �̅�𝑣10 ∙ (2��̅�𝑣10𝑇𝑇�̇̅�𝑣10�

2 − |�̈̅�𝑣10|)�. (66) 
 
Inserting Eq. (66) in Eq. (62) gives 
 

�
�̇�𝜔𝑦𝑦0 − �̇�𝑣10𝑇𝑇 ∙ �̇�𝑣30
�̇�𝜔𝑧𝑧0 + �̇�𝑣10𝑇𝑇 ∙ �̇�𝑣20

� = �+𝑣𝑣30
𝑇𝑇

−𝑣𝑣20𝑇𝑇
� ��̈̅�𝑣10 − �̇̅�𝑣10 ∙ 2�̅�𝑣10𝑇𝑇�̇̅�𝑣10 + �̅�𝑣10 ∙ (2��̅�𝑣10𝑇𝑇�̇̅�𝑣10�

2 − |�̅�𝑣10|̈ )� 

= �+𝑣𝑣30
𝑇𝑇

−𝑣𝑣20𝑇𝑇
� ��̈̅�𝑣10 − �̇̅�𝑣10 ∙ 2�̅�𝑣10𝑇𝑇�̇̅�𝑣10� 

(67) 

           
rearranging terms finally 

 

�
�̇�𝜔𝑦𝑦0 −�̇�𝑣30𝑇𝑇 ∙ �̇�𝑣10�������

𝐴𝐴1

+2𝑣𝑣30𝑇𝑇�̇̅�𝑣10 ∙ �̅�𝑣10𝑇𝑇�̇̅�𝑣10�������������
𝐴𝐴2

�̇�𝜔𝑧𝑧0 +�̇�𝑣10𝑇𝑇 ∙ �̇�𝑣20�������
𝐴𝐴3

−2𝑣𝑣20𝑇𝑇�̇̅�𝑣10 ∙ �̅�𝑣10𝑇𝑇�̇̅�𝑣10�������������
𝐴𝐴4

� = �+𝑣𝑣30
𝑇𝑇

−𝑣𝑣20𝑇𝑇
� �̈̅�𝑣10. (68) 

 
Expressions 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3,𝐴𝐴4 are now solved for the unknown 𝜒𝜒-values in Eqs. (44), (45), (56), (57). 
A1=−�̇�𝑣30𝑇𝑇 ∙ �̇�𝑣10: 
Inserting Eq. (26) at t=0 
 

      𝐴𝐴1 = −�̇�𝑣30𝑇𝑇 ∙ �̇�𝑣10 
             = −�𝑣𝑣�̇10 ∙ 𝑣𝑣20 + 𝑣𝑣�10 ∙ �̇�𝑣20�

𝑇𝑇 ∙ �̇�𝑣10 = −(𝑣𝑣�10 ∙ �̇�𝑣20)𝑇𝑇 ∙ �̇�𝑣10 = �̇�𝑣20𝑇𝑇𝑣𝑣�10�̇�𝑣10 

    =⏟
𝑒𝑒𝑒𝑒𝑒𝑒.  (40),(44) 

�̇�𝑣20𝑇𝑇𝑣𝑣�10�𝐸𝐸 − �̅�𝑣10 ∙ �̅�𝑣10𝑇𝑇� ∙ �̇̅�𝑣10 = �̇�𝑣20𝑇𝑇𝑣𝑣�10�𝐸𝐸 − �̅�𝑣10 ∙ �̅�𝑣10𝑇𝑇� �[+𝑣𝑣30 −𝑣𝑣20] �
𝜔𝜔𝑦𝑦0
𝜔𝜔𝑧𝑧0

� + 𝜒𝜒1 ∙ 𝑣𝑣10� 

             = �̇�𝑣20𝑇𝑇𝑣𝑣�10 �[+𝑣𝑣30 −𝑣𝑣20] �
𝜔𝜔𝑦𝑦0
𝜔𝜔𝑧𝑧0

�� = �̇�𝑣20𝑇𝑇 �[−𝑣𝑣20 −𝑣𝑣30] �
𝜔𝜔𝑦𝑦0
𝜔𝜔𝑧𝑧0

�� 

    =⏟
𝑒𝑒𝑒𝑒.(40) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣2 

[𝜔𝜔𝑦𝑦0 𝜔𝜔𝑧𝑧0] �−𝑣𝑣20
𝑇𝑇

−𝑣𝑣30𝑇𝑇
� �̇�𝑣20 = [𝜔𝜔𝑦𝑦0 𝜔𝜔𝑧𝑧0] �−𝑣𝑣20

𝑇𝑇

−𝑣𝑣30𝑇𝑇
� �𝐸𝐸 − �̅�𝑣20 ∙ �̅�𝑣20𝑇𝑇� ∙ �̇̅�𝑣20 

             = −𝜔𝜔𝑧𝑧0 ∙ 𝑣𝑣30𝑇𝑇 ∙ �̇̅�𝑣20 
=⏟

𝑒𝑒𝑒𝑒𝑒𝑒.(40),(51) 𝑎𝑎𝑎𝑎 𝑎𝑎=0
− 𝜔𝜔𝑧𝑧0 ∙ 𝑣𝑣30𝑇𝑇 ∙ ��̅�𝑣�̇10 ∙ 𝛿𝛿0 + �̅�𝑣�10 ∙ �̇�𝛿0� 

     =⏟
𝑒𝑒𝑒𝑒𝑒𝑒.(34) (44) 

− 𝜔𝜔𝑧𝑧0 ∙ 𝑣𝑣30𝑇𝑇 ∙ ��+𝜔𝜔𝑦𝑦0𝑣𝑣�30 − 𝜔𝜔𝑧𝑧0𝑣𝑣�20 + 𝜒𝜒1 ∙ 𝑣𝑣�10� ∙ (−𝑣𝑣30 + 𝜒𝜒13 ∙ 𝑣𝑣10) + �̅�𝑣�10 ∙ �̇�𝛿0� 

         =⏟
𝑒𝑒𝑒𝑒.(56)

− 𝜔𝜔𝑧𝑧0 ∙ �(+𝜔𝜔𝑧𝑧0𝑣𝑣10𝑇𝑇 + 𝜒𝜒1 ∙ 𝑣𝑣20𝑇𝑇) ∙ (−𝑣𝑣30 + 𝜒𝜒13 ∙ 𝑣𝑣10) + 𝑣𝑣30𝑇𝑇 ∙ �̅�𝑣�10 ∙ �̇�𝛿0� 

             = −𝜔𝜔𝑧𝑧0 ∙ �+𝜔𝜔𝑧𝑧0 ∙ 𝜒𝜒13 + 𝑣𝑣30𝑇𝑇 ∙ �̅�𝑣�10 ∙ �−𝜔𝜔𝑥𝑥0 ∙ 𝑣𝑣20 + [𝑣𝑣10 𝑣𝑣30 −𝜔𝜔𝑧𝑧0 ∙ 𝑣𝑣20] ∙ �
𝜒𝜒2
𝜒𝜒3
𝜒𝜒13

��� 

             = −𝜔𝜔𝑧𝑧0 ∙ �+𝜔𝜔𝑧𝑧0 ∙ 𝜒𝜒13 + 𝑣𝑣20𝑇𝑇 �−𝜔𝜔𝑥𝑥0 ∙ 𝑣𝑣20 + [𝑣𝑣10 𝑣𝑣30 −𝜔𝜔𝑧𝑧0 ∙ 𝑣𝑣20] ∙ �
𝜒𝜒2
𝜒𝜒3
𝜒𝜒13

��� 

             = −𝜔𝜔𝑧𝑧0 ∙ (+𝜔𝜔𝑧𝑧0 ∙ 𝜒𝜒13 − 𝜔𝜔𝑥𝑥0 − 𝜔𝜔𝑧𝑧0 ∙ 𝜒𝜒13 ) 
             = +𝜔𝜔𝑥𝑥0 ∙ 𝜔𝜔𝑧𝑧0 
      𝐴𝐴1 = +𝜔𝜔𝑥𝑥0 ∙ 𝜔𝜔𝑧𝑧0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(69) 
In a similar way the following simple expressions are received: 
 

𝐴𝐴2 = 2𝜔𝜔𝑦𝑦0 ∙ 𝜒𝜒1  (70) 
 

𝐴𝐴3 = −𝜔𝜔𝑥𝑥0 ∙ 𝜔𝜔𝑦𝑦0  (71) 
 

𝐴𝐴4 = +2𝜔𝜔𝑧𝑧0 ∙ 𝜒𝜒1  (72) 
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Inserting the last four eqs. into Eq. (68) gives 

 
 

�
�̇�𝜔𝑦𝑦0+𝜔𝜔𝑥𝑥0 ∙ 𝜔𝜔𝑧𝑧0
�̇�𝜔𝑧𝑧0−𝜔𝜔𝑥𝑥0 ∙ 𝜔𝜔𝑦𝑦0

� + �
2𝜔𝜔𝑦𝑦0
2𝜔𝜔𝑧𝑧0

� ∙ 𝜒𝜒1 = �+𝑣𝑣30
𝑇𝑇

−𝑣𝑣20𝑇𝑇
� �̈̅�𝑣10. (73) 

 
For Eq.(73) a particular solution for �̈̅�𝑣10, �̈̅�𝑣10 p1 , is obviously 
 

�̈̅�𝑣10 p1 = [+𝑣𝑣30 −𝑣𝑣20] ��
�̇�𝜔𝑦𝑦0+𝜔𝜔𝑥𝑥0 ∙ 𝜔𝜔𝑧𝑧0
�̇�𝜔𝑧𝑧0−𝜔𝜔𝑥𝑥0 ∙ 𝜔𝜔𝑦𝑦0

� + �
2𝜔𝜔𝑦𝑦0
2𝜔𝜔𝑧𝑧0

� ∙ 𝜒𝜒1� (74) 

 
The general solution including null space vector 𝑣𝑣10 scalable with an arbitrary number 𝜒𝜒7 is then 
 

�̈̅�𝑣10 = �̈̅�𝑣10 p1 + 𝜒𝜒7 ∙ 𝑣𝑣10. (75) 
 
Eq. (75) is now separated in terms with and without 𝜒𝜒-values, and similar for the final values �̈̅�𝑣11: 
 

�̈̅�𝑣10 = �̈̅�𝑣10p + 𝑈𝑈20 �
𝜒𝜒1
𝜒𝜒7� ; �̈̅�𝑣10p: = [+𝑣𝑣30 −𝑣𝑣20] �

�̇�𝜔𝑦𝑦0+𝜔𝜔𝑥𝑥0 ∙ 𝜔𝜔𝑧𝑧0
�̇�𝜔𝑧𝑧0−𝜔𝜔𝑥𝑥0 ∙ 𝜔𝜔𝑦𝑦0

� ;𝑈𝑈20: = [2(𝜔𝜔𝑦𝑦0𝑣𝑣30 − 𝜔𝜔𝑧𝑧0𝑣𝑣20) 𝑣𝑣10] (76) 

 

�̈̅�𝑣11 = �̈̅�𝑣11p + 𝑈𝑈21 �
𝜒𝜒4
𝜒𝜒10� ; �̈̅�𝑣11p: = [+𝑣𝑣31 −𝑣𝑣21] �

�̇�𝜔𝑦𝑦1+𝜔𝜔𝑥𝑥1 ∙ 𝜔𝜔𝑧𝑧1
�̇�𝜔𝑧𝑧1−𝜔𝜔𝑥𝑥1 ∙ 𝜔𝜔𝑦𝑦1

� ;𝑈𝑈21: = [2(𝜔𝜔𝑦𝑦1𝑣𝑣31 − 𝜔𝜔𝑧𝑧1𝑣𝑣21) 𝑣𝑣11] 
 

(77) 

 
Finally, in order to map the x-rate acceleration initial condition �̇�𝜔𝑥𝑥0 solving Eq. (61) for vector �̈�𝑣20 yields 
 

�̇�𝜔𝑥𝑥0 + �̇�𝑣20𝑇𝑇 ∙ �̇�𝑣30 = −𝑣𝑣30𝑇𝑇�̈�𝑣20 (78) 
 
Similar to Eq. (66), vector �̈�𝑣20 is computed to be 
 

�̈�𝑣20 = ��̈̅�𝑣20 − �̇̅�𝑣20 ∙ 2�̅�𝑣20𝑇𝑇�̇̅�𝑣20 + �̅�𝑣20 ∙ (2��̅�𝑣20𝑇𝑇�̇̅�𝑣20�
2 − |�̈̅�𝑣20|)� (79) 

 
Vector �̈̅�𝑣20 can be be computed by forming the second derivative in Eq. (56) 
 

�̈̅�𝑣20 = �̅�𝑣�̈10 ∙ 𝛿𝛿0 + �̅�𝑣�̇10 ∙ �̇�𝛿0 + �̅�𝑣�̇10 ∙ �̇�𝛿0 + �̅�𝑣�10 ∙ �̈�𝛿0 = �̅�𝑣�̈10 ∙ 𝛿𝛿0 + 2�̅�𝑣�̇10 ∙ �̇�𝛿0 + �̅�𝑣�10 ∙ �̈�𝛿0 (80) 
 
Inserting Eq. (79) in Eq. (78) gives 
 

�̇�𝜔𝑥𝑥0 + �̇�𝑣20𝑇𝑇 ∙ �̇�𝑣30 = −𝑣𝑣30𝑇𝑇 ��̈̅�𝑣20 − �̇̅�𝑣20 ∙ 2�̅�𝑣20𝑇𝑇�̇̅�𝑣20 + �̅�𝑣20 ∙ �2��̅�𝑣20𝑇𝑇�̇̅�𝑣20�
2 − |�̈̅�𝑣20|�� 

= −𝑣𝑣30𝑇𝑇𝑣𝑣30𝑇𝑇��̈̅�𝑣20 − �̇̅�𝑣20 ∙ 2�̅�𝑣20𝑇𝑇�̇̅�𝑣20� 
(81) 

 
rearranging terms using Eq. (80) finally 

 
�̇�𝜔𝑥𝑥0 + �̇�𝑣20𝑇𝑇 ∙ �̇�𝑣30 = −𝑣𝑣30𝑇𝑇��̅�𝑣�̈10 ∙ 𝛿𝛿0 + 2�̅�𝑣�̇10 ∙ �̇�𝛿0 + �̅�𝑣�10 ∙ �̈�𝛿0 − �̇̅�𝑣20 ∙ 2�̅�𝑣20𝑇𝑇�̇̅�𝑣20� (82) 

 
�̇�𝜔𝑥𝑥0 + 2𝑣𝑣30𝑇𝑇�̅�𝑣�̇10�̇�𝛿0 + 𝑣𝑣30𝑇𝑇�̅�𝑣�̈10𝛿𝛿0 + �̇�𝑣30𝑇𝑇�̇�𝑣20 − 2𝑣𝑣30𝑇𝑇�̇̅�𝑣20�̅�𝑣20𝑇𝑇�̇̅�𝑣20 = −𝑣𝑣20𝑇𝑇�̅�𝑣�10 ∙ �̈�𝛿0 = −𝑣𝑣20𝑇𝑇 ∙ �̈�𝛿0 

 
(83) 

while 𝛿𝛿0, �̇�𝛿0, �̅�𝑣�10, �̅�𝑣�̇10, �̅�𝑣�̈10 are determined in Eqs. (34), (56), (30), (44), (76), and �̈�𝛿0 is to be determined. Similar to 
Eqs. (76), (77) the following results can be derived: 
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�̈�𝛿0 = �̈�𝛿0𝑝𝑝 + 𝐷𝐷20 ∙

⎣
⎢
⎢
⎢
⎡
𝜒𝜒2
𝜒𝜒3
𝜒𝜒8
𝜒𝜒9
𝜒𝜒13⎦

⎥
⎥
⎥
⎤

�
=:𝜒𝜒𝛿𝛿𝛿𝛿

;           �̈�𝛿0𝑝𝑝 ≔ 𝑣𝑣20 ∙ �−�̇�𝜔𝑥𝑥0+𝜔𝜔𝑦𝑦0𝜔𝜔𝑧𝑧0�; 

𝐷𝐷20: = �−2𝜔𝜔𝑧𝑧0 ∙ 𝑣𝑣20 2𝜔𝜔𝑥𝑥0 ∙ 𝑣𝑣20 𝑣𝑣10 𝑣𝑣30 −��̇�𝜔𝑧𝑧0+𝜔𝜔𝑥𝑥0 ∙ 𝜔𝜔𝑦𝑦0� ∙ 𝑣𝑣20� 

(84) 

 

�̈�𝛿1 = �̈�𝛿1𝑝𝑝 + 𝐷𝐷21 ∙

⎣
⎢
⎢
⎢
⎡
𝜒𝜒5
𝜒𝜒6
𝜒𝜒11
𝜒𝜒12
𝜒𝜒14⎦

⎥
⎥
⎥
⎤

�
=:𝜒𝜒𝛿𝛿𝛿𝛿

;           �̈�𝛿1𝑝𝑝 ≔ 𝑣𝑣21 ∙ �−�̇�𝜔𝑥𝑥1+𝜔𝜔𝑦𝑦1𝜔𝜔𝑧𝑧1�; 

𝐷𝐷21: = �−2𝜔𝜔𝑧𝑧1 ∙ 𝑣𝑣21 2𝜔𝜔𝑥𝑥1 ∙ 𝑣𝑣21 𝑣𝑣11 𝑣𝑣31 −��̇�𝜔𝑧𝑧1+𝜔𝜔𝑥𝑥1 ∙ 𝜔𝜔𝑦𝑦1� ∙ 𝑣𝑣21� 

 
(85) 

 
Note that again as in Eq. (77), (78) all boundary conditions depend linearly on the free and unconstraint design 

parameters 𝜒𝜒𝑏𝑏 .  

D. Satisfaction of vector boundary conditions 
 

8. Satisfaction of boundary conditions of vector 𝑣𝑣1 
To summarize, the boundary conditions of the involved polynomials are listed. 

For the three polynomials �̅�𝑣1𝑏𝑏(𝑡𝑡) = ℎ𝑇𝑇(𝑡𝑡) ∙ 𝑐𝑐1𝑏𝑏  (𝑖𝑖 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧 from Eq. (2)) the following vector boundary conditions 
according to Eqs. (30), (31), (44), (45), (76), (77) hold and restrict the choice of the unknown coefficients 𝑐𝑐1𝑏𝑏: 

 
�̅�𝑣10𝑏𝑏(𝜒𝜒) = ℎ𝑇𝑇(𝑡𝑡 = 0) ∙ 𝑐𝑐1𝑏𝑏  (86) 
�̅�𝑣11𝑏𝑏(𝜒𝜒) = ℎ𝑇𝑇(𝑡𝑡 = 𝑡𝑡1) ∙ 𝑐𝑐1𝑏𝑏  (87) 
�̇̅�𝑣10 𝑏𝑏(𝜒𝜒) = ℎ̇𝑇𝑇(𝑡𝑡 = 0) ∙ 𝑐𝑐1𝑏𝑏  (88) 
�̇̅�𝑣11 𝑏𝑏(𝜒𝜒) = ℎ̇𝑇𝑇(𝑡𝑡 = 𝑡𝑡1) ∙ 𝑐𝑐1𝑏𝑏  (89) 
�̈̅�𝑣10 𝑏𝑏(𝜒𝜒) = ℎ̈𝑇𝑇(𝑡𝑡 = 0) ∙ 𝑐𝑐1𝑏𝑏  (90) 
�̈̅�𝑣11 𝑏𝑏(𝜒𝜒) = ℎ̈𝑇𝑇(𝑡𝑡 = 𝑡𝑡1) ∙ 𝑐𝑐1𝑏𝑏  (91) 

 
Eqs. (95)-(100)can be summarized in matrix notation for each axis 𝑖𝑖 = 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
�̅�𝑣10𝑏𝑏
�̅�𝑣11𝑏𝑏
�̇̅�𝑣10 𝑏𝑏

�̇̅�𝑣11 𝑏𝑏

�̈̅�𝑣10 𝑏𝑏

�̈̅�𝑣11 𝑏𝑏⎦
⎥
⎥
⎥
⎥
⎥
⎤

���
𝑦𝑦1𝑖𝑖(𝜒𝜒)

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−ℎ0

𝑇𝑇 −
−ℎ1

𝑇𝑇 −
−ℎ̇0

𝑇𝑇
−

−ℎ̇1
𝑇𝑇 −

−ℎ̈0
𝑇𝑇 −

−ℎ̈1
𝑇𝑇
−⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�������
=:𝐻𝐻

∙ 𝑐𝑐1𝑏𝑏  (92) 

 
or by computing it for all axes columnwise in matrix 𝐶𝐶1 at the same time 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡�̅�𝑣10

𝑇𝑇

�̅�𝑣11𝑇𝑇

�̇̅�𝑣10 
𝑇𝑇

�̇̅�𝑣11
𝑇𝑇

�̈̅�𝑣10
𝑇𝑇

�̈̅�𝑣11
𝑇𝑇 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 𝐻𝐻 ∙ [𝑐𝑐1𝑥𝑥 𝑐𝑐1𝑦𝑦 𝑐𝑐1𝑧𝑧 ]�����������
=:𝐶𝐶1

, where (93) 
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the time matrix 𝐻𝐻 has the dimension 6 𝑥𝑥 (𝑛𝑛 + 1). This means, to satisfy the boundary conditions exactly a 

polynomial of order 5 is needed.  
Inserting Eqs. (30), (31), (44), (45), (76), (77) into Eq. (93) gives 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ �̅�𝑣10𝑇𝑇

�̅�𝑣11𝑇𝑇

�̇̅�𝑣10𝑝𝑝
𝑇𝑇 + 𝜒𝜒1 ∙ �̅�𝑣10𝑇𝑇

�̇̅�𝑣11𝑝𝑝
𝑇𝑇 + 𝜒𝜒4 ∙ �̅�𝑣11𝑇𝑇

�̈̅�𝑣10𝑝𝑝
𝑇𝑇 + [𝜒𝜒1 𝜒𝜒7] ∙ �𝑢𝑢20 1

𝑇𝑇

𝑢𝑢20 2
𝑇𝑇������

𝑈𝑈20

�̈̅�𝑣11𝑝𝑝
𝑇𝑇 + [𝜒𝜒4 𝜒𝜒10] ∙ �𝑢𝑢21 1

𝑇𝑇

𝑢𝑢21 2
𝑇𝑇������

𝑈𝑈21 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 𝐻𝐻 ∙ [𝑐𝑐1𝑥𝑥 𝑐𝑐1𝑦𝑦 𝑐𝑐1𝑧𝑧 ]�����������
𝐶𝐶1

, (94) 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ �̅�𝑣10

𝑇𝑇

�̅�𝑣11𝑇𝑇

�̇̅�𝑣10𝑝𝑝
𝑇𝑇

�̇̅�𝑣11𝑝𝑝
𝑇𝑇

�̈̅�𝑣10𝑝𝑝
𝑇𝑇

�̈̅�𝑣11𝑝𝑝
𝑇𝑇
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�����
=:𝑉𝑉0

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⎣
⎢
⎢
⎢
⎢
⎡

   0         0       0       0
   0         0       0       0
�̅�𝑣10𝑥𝑥      0       0       0
  0      �̅�𝑣11𝑥𝑥     0       0
𝑢𝑢20 1𝑥𝑥    0    𝑢𝑢20 2𝑥𝑥     0
     0     𝑢𝑢21 1𝑥𝑥   0 𝑢𝑢21 2𝑥𝑥⎦

⎥
⎥
⎥
⎥
⎤

�������������������
=:𝑈𝑈𝑥𝑥

�

𝜒𝜒1
𝜒𝜒4
𝜒𝜒7
𝜒𝜒10

�

���
=:𝜒𝜒𝑣𝑣

      
|

𝑈𝑈𝑦𝑦 ∙ 𝜒𝜒𝑣𝑣
|

      
|

𝑈𝑈𝑧𝑧 ∙ 𝜒𝜒𝑣𝑣
|

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 𝐻𝐻 ∙ 𝐶𝐶1. (95) 

 
The general solution of Eq. (95) is 
 

𝐶𝐶1 = 𝐻𝐻𝑇𝑇(𝐻𝐻𝐻𝐻𝑇𝑇)−1���������
=:𝐻𝐻1

∙ 𝑉𝑉0 + 𝐻𝐻𝑇𝑇(𝐻𝐻𝐻𝐻𝑇𝑇)−1 ∙ �
|

𝑈𝑈𝑥𝑥 ∙ 𝜒𝜒𝑣𝑣
|

|
𝑈𝑈𝑦𝑦 ∙ 𝜒𝜒𝑣𝑣

|

|
𝑈𝑈𝑧𝑧 ∙ 𝜒𝜒𝑣𝑣

|
� + 𝐻𝐻0 ∙ �

|
𝜌𝜌𝑥𝑥
|

|
𝜌𝜌𝑦𝑦
|

|
𝜌𝜌𝑧𝑧
|
�, (96) 

 

𝐶𝐶1 = 𝐻𝐻1 ∙ [𝑉𝑉0𝑥𝑥 𝑉𝑉0𝑦𝑦 𝑉𝑉0𝑧𝑧]�����������
=𝑉𝑉0

+𝐻𝐻1 ∙ �
|

𝑈𝑈𝑥𝑥 ∙ 𝜒𝜒𝑣𝑣
|

|
𝑈𝑈𝑦𝑦 ∙ 𝜒𝜒𝑣𝑣

|

|
𝑈𝑈𝑧𝑧 ∙ 𝜒𝜒𝑣𝑣

|
� + 𝐻𝐻0 ∙ �

|
𝜌𝜌𝑥𝑥
|

|
𝜌𝜌𝑦𝑦
|

|
𝜌𝜌𝑧𝑧
|
�, 

 
(97) 

 
𝐻𝐻0 is the (𝑛𝑛 + 1)𝑥𝑥(𝑛𝑛 − 5) dimensional null space matrix of 𝐻𝐻, i.e. the matrix 𝐻𝐻0 causes the matrix product 
 

𝐻𝐻 ∙ 𝐻𝐻0 = 0, (98) 
 

and thus all possible linear combinations of the columns of 𝐻𝐻0 in each axis, i.e.  
 

𝐻𝐻 ∙ 𝐻𝐻0���
0

∙ �
|
𝜌𝜌𝑥𝑥
|

|
𝜌𝜌𝑦𝑦
|

|
𝜌𝜌𝑧𝑧
|
� = 0, (99) 

 
where 𝜌𝜌𝑥𝑥, 𝜌𝜌𝑦𝑦, 𝜌𝜌𝑧𝑧 are the (𝑛𝑛 − 5)𝑥𝑥1 dimensional free null space component vectors in all axes. Eq. (97) can also 

be expressed in vector notation yielding 
 

�
𝑐𝑐1𝑥𝑥 
𝑐𝑐1𝑦𝑦 
𝑐𝑐1𝑧𝑧 

� = �
𝐻𝐻1 ∙ 𝑉𝑉0𝑥𝑥
𝐻𝐻1 ∙ 𝑉𝑉0𝑦𝑦
𝐻𝐻1 ∙ 𝑉𝑉0𝑧𝑧

� + �
𝐻𝐻1 ∙ 𝑈𝑈𝑥𝑥 𝐻𝐻0 0 0
𝐻𝐻1 ∙ 𝑈𝑈𝑦𝑦 0 𝐻𝐻0 0
𝐻𝐻1 ∙ 𝑈𝑈𝑧𝑧 0 0 𝐻𝐻0

� ∙ �

𝜒𝜒𝑣𝑣
𝜌𝜌𝑥𝑥
𝜌𝜌𝑦𝑦
𝜌𝜌𝑧𝑧

�. (100) 
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Note that 𝐻𝐻1from Eqs. (96), (100) may be numerically difficult to compute. A measure to solve this numerical 
problem comes from Eqs. (20), (21), (22): Evaluating ℎ0

𝑇𝑇 ,  ℎ̇0
𝑇𝑇 ,  ℎ̈0

𝑇𝑇  for 𝑡𝑡 = 0 in Eqs. (101), (103) allows to compute 
the last three coefficients corresponding to the smallest order in 𝑡𝑡, i.e. 𝑡𝑡2, 𝑡𝑡1, 𝑡𝑡0:  

 

�
�̈̅�𝑣10𝑝𝑝

𝑇𝑇 + [𝜒𝜒1 𝜒𝜒7] ∙ 𝑈𝑈20
�̇̅�𝑣10𝑝𝑝

𝑇𝑇 + 𝜒𝜒1 ∙ �̅�𝑣10𝑇𝑇

�̅�𝑣10𝑇𝑇
� = �

−ℎ̈0
𝑇𝑇 −

−ℎ̇0
𝑇𝑇 −

−ℎ0
𝑇𝑇 −

� ∙ [𝑐𝑐1𝑥𝑥 𝑐𝑐1𝑦𝑦 𝑐𝑐1𝑧𝑧 ] = �
0 … 2 0 0
0 … 0 1 0
0 … 0 0 1

� [𝑐𝑐1𝑥𝑥 𝑐𝑐1𝑦𝑦 𝑐𝑐1𝑧𝑧 ] 

= �
2𝑐𝑐1𝑥𝑥2 2𝑐𝑐1𝑦𝑦2 2𝑐𝑐1𝑧𝑧2 
𝑐𝑐1𝑥𝑥1 𝑐𝑐1𝑦𝑦1 𝑐𝑐1𝑧𝑧1 
𝑐𝑐1𝑥𝑥0 𝑐𝑐1𝑦𝑦0 𝑐𝑐1𝑧𝑧0 

�. 

(101) 

 
after rearranging terms a particular solution for the first three coefficients are summarized in matrix 𝐶𝐶1𝑄𝑄𝑝𝑝: 

 

�
𝑐𝑐1𝑥𝑥2 𝑐𝑐1𝑦𝑦2 𝑐𝑐1𝑧𝑧2 
𝑐𝑐1𝑥𝑥1 𝑐𝑐1𝑦𝑦1 𝑐𝑐1𝑧𝑧1 
𝑐𝑐1𝑥𝑥0 𝑐𝑐1𝑦𝑦0 𝑐𝑐1𝑧𝑧0 

�
�������������

=:𝐶𝐶1𝑄𝑄𝑄𝑄

=

⎣
⎢
⎢
⎢
⎡1
2
�̈̅�𝑣10𝑝𝑝

𝑇𝑇

�̇̅�𝑣10𝑝𝑝
𝑇𝑇

�̅�𝑣10𝑇𝑇 ⎦
⎥
⎥
⎥
⎤

�������
=:𝐶𝐶1𝑄𝑄0

+

⎣
⎢
⎢
⎢
⎢
⎡

�

1
2
𝑢𝑢20 1𝑥𝑥

1
2
𝑢𝑢20 2𝑥𝑥

�̅�𝑣10𝑥𝑥 0
0 0

�

�������������
𝑈𝑈𝑄𝑄𝑥𝑥

∙ �
𝜒𝜒1
𝜒𝜒7��

=:𝜒𝜒𝑣𝑣𝑄𝑄

   
|

𝑈𝑈𝑄𝑄𝑦𝑦 ∙ 𝜒𝜒𝑣𝑣𝑄𝑄
|

   
|

𝑈𝑈𝑄𝑄𝑧𝑧 ∙ 𝜒𝜒𝑣𝑣𝑄𝑄
|

⎦
⎥
⎥
⎥
⎥
⎤

. (102) 

 
Now, the rest of the coefficients, summarized in matrix 𝐶𝐶1𝑅𝑅𝑝𝑝, needs to be computed, which form a particular 

solution of the unknown coefficients in 𝐶𝐶1, 𝐶𝐶1𝑝𝑝: 
 

𝐶𝐶1𝑝𝑝 = �
𝐶𝐶1𝑅𝑅𝑝𝑝
𝐶𝐶1𝑄𝑄𝑝𝑝

�. (103) 

 
𝐶𝐶1𝑅𝑅𝑝𝑝 corresponds to orders three and higher in 𝑡𝑡, i.e. 𝑡𝑡3, 𝑡𝑡4, 𝑡𝑡5 … 𝑡𝑡𝑛𝑛, and can be determined as follows: 
Eq. (103) is evaluated at the final boundary conditions only to yield 
 

⎣
⎢
⎢
⎢
⎡ �̅�𝑣11𝑇𝑇

�̇̅�𝑣11𝑝𝑝
𝑇𝑇 + 𝜒𝜒4 ∙ �̅�𝑣11𝑇𝑇

�̈̅�𝑣11𝑝𝑝
𝑇𝑇 + [𝜒𝜒4 𝜒𝜒10] ∙ �𝑢𝑢21 1

𝑇𝑇

𝑢𝑢21 2
𝑇𝑇�⎦
⎥
⎥
⎥
⎤

= �
−ℎ1

𝑇𝑇 −
−ℎ̇1

𝑇𝑇 −
−ℎ̈1

𝑇𝑇
−

�

�������
=:𝐻𝐻𝑅𝑅

∙ �
𝐶𝐶1𝑅𝑅𝑝𝑝
𝐶𝐶1𝑄𝑄𝑝𝑝

�
���

= [𝐻𝐻𝑅𝑅𝑎𝑎 𝐻𝐻𝑅𝑅𝑏𝑏]�������
=:𝐻𝐻𝑅𝑅

∙ �
𝐶𝐶1𝑅𝑅𝑝𝑝
𝐶𝐶1𝑄𝑄𝑝𝑝

�
���
𝐶𝐶1

, (104) 

 

�

�̅�𝑣11𝑇𝑇

�̇̅�𝑣11𝑝𝑝
𝑇𝑇

�̈̅�𝑣11𝑝𝑝
𝑇𝑇
�

�����
𝑉𝑉0𝑅𝑅

+

⎣
⎢
⎢
⎢
⎡
�

0 0
�̅�𝑣11𝑥𝑥 0
𝑢𝑢21 1𝑥𝑥 𝑢𝑢21 2𝑥𝑥

�
�����������

𝑈𝑈𝑅𝑅𝑥𝑥

∙ �
𝜒𝜒4
𝜒𝜒10��
=:𝜒𝜒𝑣𝑣𝑅𝑅

   
|

𝑈𝑈𝑅𝑅𝑦𝑦 ∙ 𝜒𝜒𝑣𝑣𝑅𝑅
|

   
|

𝑈𝑈𝑅𝑅𝑧𝑧 ∙ 𝜒𝜒𝑣𝑣𝑅𝑅
|

⎦
⎥
⎥
⎥
⎤
− 𝐻𝐻𝑅𝑅𝑏𝑏 ∙ 𝐶𝐶1𝑄𝑄𝑝𝑝 = 𝐻𝐻𝑅𝑅𝑎𝑎 ∙ 𝐶𝐶1𝑅𝑅𝑝𝑝. 

 
(105) 

 
Inserting Eq. (102) in Eq. (105) gives the matrix equation 
 

𝑉𝑉0𝑅𝑅 + �
|

𝑈𝑈𝑅𝑅𝑥𝑥 ∙ 𝜒𝜒𝑣𝑣𝑅𝑅
|

   
|

𝑈𝑈𝑅𝑅𝑦𝑦 ∙ 𝜒𝜒𝑣𝑣𝑅𝑅
|

   
|

𝑈𝑈𝑅𝑅𝑧𝑧 ∙ 𝜒𝜒𝑣𝑣𝑅𝑅
|

� − 𝐻𝐻𝑅𝑅𝑏𝑏 �
|

𝑈𝑈𝑄𝑄𝑥𝑥 ∙ 𝜒𝜒𝑣𝑣𝑄𝑄
|

   
|

𝑈𝑈𝑄𝑄𝑦𝑦 ∙ 𝜒𝜒𝑣𝑣𝑄𝑄
|

   
|

𝑈𝑈𝑄𝑄𝑧𝑧 ∙ 𝜒𝜒𝑣𝑣𝑄𝑄
|

� − 𝐻𝐻𝑅𝑅𝑏𝑏𝐶𝐶1𝑄𝑄0 = 𝐻𝐻𝑅𝑅𝑎𝑎 ∙ 𝐶𝐶1𝑅𝑅𝑝𝑝 (106) 

 

𝑉𝑉0𝑅𝑅 − 𝐻𝐻𝑅𝑅𝑏𝑏𝐶𝐶1𝑄𝑄0 +

⎣
⎢
⎢
⎢
⎡

|

�𝑈𝑈𝑅𝑅𝑥𝑥  − 𝐻𝐻𝑅𝑅𝑏𝑏𝑈𝑈𝑄𝑄𝑥𝑥������������
=:𝑈𝑈𝑅𝑅𝑄𝑄𝑥𝑥

∙ �
𝜒𝜒𝑣𝑣𝑅𝑅
𝜒𝜒𝑣𝑣𝑄𝑄����
=:𝜒𝜒�𝑣𝑣

|

      
|

𝑈𝑈𝑅𝑅𝑄𝑄𝑦𝑦 ∙ �̅�𝜒𝑣𝑣
|

       
|

𝑈𝑈𝑅𝑅𝑄𝑄𝑧𝑧 ∙ �̅�𝜒𝑣𝑣
|

⎦
⎥
⎥
⎥
⎤

= 𝐻𝐻𝑅𝑅𝑎𝑎 ∙ 𝐶𝐶1𝑅𝑅𝑝𝑝 
 

(107) 
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From Eq. (107) a particular solution 𝐶𝐶1𝑅𝑅𝑝𝑝 can be computed in the usual manner: 

𝐶𝐶1𝑅𝑅𝑝𝑝 = 𝐻𝐻𝑅𝑅𝑎𝑎𝑇𝑇�𝐻𝐻𝑅𝑅𝑎𝑎 ∙ 𝐻𝐻𝑅𝑅𝑎𝑎𝑇𝑇�
−1

�������������
=:𝐻𝐻𝑅𝑅1

(𝑉𝑉0𝑅𝑅 − 𝐻𝐻𝑅𝑅𝑏𝑏𝐶𝐶1𝑄𝑄0)
�������������������������

=:𝐶𝐶1𝑅𝑅0

+ 𝐻𝐻𝑅𝑅1 ∙ �
|

𝑈𝑈𝑅𝑅𝑄𝑄𝑥𝑥 ∙ �̅�𝜒𝑣𝑣
|

      
|

𝑈𝑈𝑅𝑅𝑄𝑄𝑦𝑦 ∙ �̅�𝜒𝑣𝑣
|

       
|

𝑈𝑈𝑅𝑅𝑄𝑄𝑧𝑧 ∙ �̅�𝜒𝑣𝑣
|

� (108) 

 
Using the definition of �̅�𝜒𝑣𝑣  from Eq. (107) in Eq. (102) gives: 
 

𝐶𝐶1𝑄𝑄𝑝𝑝 = 𝐶𝐶1𝑄𝑄0 + �
|

𝑈𝑈𝑄𝑄𝑥𝑥 ∙ 𝜒𝜒𝑣𝑣𝑄𝑄
|

   
|

𝑈𝑈𝑄𝑄𝑦𝑦 ∙ 𝜒𝜒𝑣𝑣𝑄𝑄
|

   
|

𝑈𝑈𝑄𝑄𝑧𝑧 ∙ 𝜒𝜒𝑣𝑣𝑄𝑄
|

� = 𝐶𝐶1𝑄𝑄0 + �
|

[0 𝑈𝑈𝑄𝑄𝑥𝑥] ∙ �̅�𝜒𝑣𝑣
|

   
|

[0 𝑈𝑈𝑄𝑄𝑦𝑦] ∙ �̅�𝜒𝑣𝑣
|

   
|

[0 𝑈𝑈𝑄𝑄𝑧𝑧] ∙ �̅�𝜒𝑣𝑣
|

� (109) 

 
    

Inserting Eqs. (117), (118) in Eq. (112) gives: 
 

𝐶𝐶1𝑝𝑝 = �
𝐶𝐶1𝑅𝑅𝑝𝑝
𝐶𝐶1𝑄𝑄𝑝𝑝

� = �
𝐶𝐶1𝑅𝑅0
𝐶𝐶1𝑄𝑄0

�
���
=:𝐶𝐶10

+

⎣
⎢
⎢
⎡
�

𝑈𝑈𝑅𝑅𝑄𝑄𝑥𝑥
[0 𝑈𝑈𝑄𝑄𝑥𝑥]��������

=:𝑆𝑆𝑥𝑥

∙ �̅�𝜒𝑣𝑣      �
𝑈𝑈𝑅𝑅𝑄𝑄𝑦𝑦

[0 𝑈𝑈𝑄𝑄𝑦𝑦]��������
=:𝑆𝑆𝑦𝑦

∙ �̅�𝜒𝑣𝑣      �
𝑈𝑈𝑅𝑅𝑄𝑄𝑧𝑧

[0 𝑈𝑈𝑄𝑄𝑧𝑧]��������
=:𝑆𝑆𝑧𝑧

∙ �̅�𝜒𝑣𝑣

⎦
⎥
⎥
⎤
 (110) 

 
The general solution of describing all possible coefficients satisfying the boundary constraints in Eq. (94) is 

retained by adding the null space vector combinations to the particular solution in Eq. (110) as done in Eq. (96): 
 

𝐶𝐶1 = 𝐶𝐶1𝑝𝑝 + 𝐻𝐻0 ∙ �
|
𝜌𝜌𝑥𝑥
|

|
𝜌𝜌𝑦𝑦
|

|
𝜌𝜌𝑧𝑧
|
� = 𝐶𝐶10 + �𝑆𝑆𝑥𝑥 ∙ �̅�𝜒𝑣𝑣      𝑆𝑆𝑦𝑦 ∙ �̅�𝜒𝑣𝑣     𝑆𝑆𝑧𝑧 ∙ �̅�𝜒𝑣𝑣� + 𝐻𝐻0 ∙ �

|
𝜌𝜌𝑥𝑥
|

|
𝜌𝜌𝑦𝑦
|

|
𝜌𝜌𝑧𝑧
|
�. (111) 

 
Using vector notation in Eq. (111), i.e.  
 

𝑐𝑐1 = [𝑐𝑐1𝑥𝑥 𝑐𝑐1𝑦𝑦 𝑐𝑐1𝑧𝑧 ]          𝑐𝑐10 = [𝑐𝑐10𝑥𝑥 𝑐𝑐10𝑦𝑦 𝑐𝑐10𝑧𝑧 ], (112) 
 

results in 
 

�
𝑐𝑐1𝑥𝑥 
𝑐𝑐1𝑦𝑦 
𝑐𝑐1𝑧𝑧 

�
���
=:𝑐𝑐1

= �
𝑐𝑐10𝑥𝑥 
𝑐𝑐10𝑦𝑦 
𝑐𝑐10𝑧𝑧 

�
���
=:𝑐𝑐10

+ �
𝑆𝑆𝑥𝑥 𝐻𝐻0 0 0
𝑆𝑆𝑦𝑦 0 𝐻𝐻0 0
𝑆𝑆𝑧𝑧 0 0 𝐻𝐻0

� ∙
�������������

=:𝐶𝐶𝑣𝑣1

�

�̅�𝜒𝑣𝑣
𝜌𝜌𝑥𝑥
𝜌𝜌𝑦𝑦
𝜌𝜌𝑧𝑧

�

�
=:𝑥𝑥𝑣𝑣1

, (113) 

 
𝑐𝑐1 = 𝑐𝑐10 + 𝐶𝐶𝑣𝑣1 ∙ 𝑥𝑥𝑣𝑣1 , 

 
(114) 

 
with the freely selectable 4 + 3(𝑛𝑛 − 5)-dimensional parameter vector 𝑥𝑥𝑣𝑣1.  

Eq. (114) summarizes the result: The unknown coefficients of vector 𝑣𝑣1 in Eq. (19) can be determined by a linear 
operation. Arbitrary numbers comprised in vector 𝑥𝑥𝑣𝑣1  are multiplied with a predefined matrix 𝐶𝐶𝑣𝑣1  and then added with 
a predifined vector 𝑐𝑐10 which depend on the boundary conditions. 

Vector �̅�𝑣1(𝑡𝑡) and its derivative defined in Eq. (21) can then be computed as 
 

�̅�𝑣1(𝑡𝑡) = �
ℎ(𝑡𝑡)𝑇𝑇 0 0

0 ℎ(𝑡𝑡)𝑇𝑇 0
0 0 ℎ(𝑡𝑡)𝑇𝑇

� ∙ 𝑐𝑐1, (115) 

 

�̇̅�𝑣1(𝑡𝑡) = �
ℎ̇(𝑡𝑡)𝑇𝑇 0 0

0 ℎ̇(𝑡𝑡)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡)𝑇𝑇

� ∙ 𝑐𝑐1, 
 

(116) 
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Satisfaction of boundary conditions of contribution factors 𝛿𝛿 corresponding to vector 𝑣𝑣2 
For the remaining three polynomials 𝛿𝛿0(𝑡𝑡) = ℎ𝑇𝑇(𝑡𝑡) ∙ 𝑐𝑐𝑗𝑗 (𝑗𝑗 = 𝛼𝛼,𝛽𝛽, 𝛾𝛾 from Eq. (24)) the vector boundary conditions 

according to Eqs. (34), (35), (56), (57), (84), (85) need to be satisfied by the unknown coefficients 𝑐𝑐𝑗𝑗. With vector 
algebraic manipulation the following general solution similar to Eq. (113) can be derived,  

 

�
𝑐𝑐α 
𝑐𝑐𝛽𝛽 
𝑐𝑐γ 
�

�
=:𝑐𝑐𝛿𝛿

= �
𝑐𝑐𝛿𝛿0α 
𝑐𝑐𝛿𝛿0𝛽𝛽 
𝑐𝑐𝛿𝛿0γ 

�
���
=:𝑐𝑐𝛿𝛿0

+ �
𝑆𝑆𝛿𝛿α 𝐻𝐻0 0 0
𝑆𝑆𝛿𝛿𝛽𝛽 0 𝐻𝐻0 0
𝑆𝑆𝛿𝛿γ 0 0 𝐻𝐻0

�
�������������

=:𝐶𝐶𝛿𝛿

∙

⎣
⎢
⎢
⎡
�̅�𝜒𝛿𝛿
𝜉𝜉α
𝜉𝜉𝛽𝛽
𝜉𝜉γ⎦
⎥
⎥
⎤

�
=:𝑥𝑥𝛿𝛿

, (117) 

 
𝑐𝑐𝛿𝛿 = 𝑐𝑐𝛿𝛿0 + 𝐶𝐶𝛿𝛿 ∙ 𝑥𝑥𝛿𝛿 , 

 
(118) 

 
with the freely selectable 10 + 3(𝑛𝑛 − 5)-dimensional parameter vector 𝑥𝑥𝛿𝛿 , in which �̅�𝜒𝛿𝛿   

 
�̅�𝜒𝛿𝛿 = �

𝜒𝜒𝛿𝛿𝑅𝑅
𝜒𝜒𝛿𝛿𝑄𝑄�, 

 
(119) 

 
where 𝜒𝜒𝛿𝛿𝑅𝑅, 𝜒𝜒𝛿𝛿𝑄𝑄 are defined in Eqs. (84),(85), vectors 𝜉𝜉α, 𝜉𝜉𝛽𝛽, 𝜉𝜉γ are for each axis the free selectable components of 

the null space columns vectors of matrix 𝐻𝐻0, vector 𝑐𝑐𝛿𝛿0 and matrix 𝐶𝐶𝛿𝛿 are similar to Eqs. (114) depending on the initial 
and final conditions. 
 

Eq. (118) summarizes the result: The unknown coefficients of vector 𝑣𝑣2 in Eq. (23) consisting of three vectors 
perpendicular to 𝑣𝑣1 weighted with polynomials with coefficients denoted 𝑐𝑐𝛿𝛿  which can be determined by a linear 
operation. Arbitrary numbers comprised in vector 𝑥𝑥𝛿𝛿  are multiplied with a predefined matrix 𝐶𝐶𝛿𝛿 and then added with 
a predifined vector 𝑐𝑐𝛿𝛿0 which depends on the boundary conditions. 

Vector �̅�𝑣2(𝑡𝑡) and its derivative defined in Eq. (23) can then be computed as 
 

�̅�𝑣2 = �̅�𝑣1� ∙ 𝛿𝛿 = �̅�𝑣1� ∙ �
ℎ(𝑡𝑡)𝑇𝑇 0 0

0 ℎ(𝑡𝑡)𝑇𝑇 0
0 0 ℎ(𝑡𝑡)𝑇𝑇

� ∙ 𝑐𝑐𝛿𝛿 . (120) 

 

�̇̅�𝑣2 = �̅�𝑣1�̇ ∙ 𝛿𝛿 + �̅�𝑣1� ∙ �̇�𝛿 = �̅�𝑣1�̇ ∙ �
ℎ(𝑡𝑡)𝑇𝑇 0 0

0 ℎ(𝑡𝑡)𝑇𝑇 0
0 0 ℎ(𝑡𝑡)𝑇𝑇

� ∙ 𝑐𝑐𝛿𝛿 + �̅�𝑣1� ∙ �
ℎ̇(𝑡𝑡)𝑇𝑇 0 0

0 ℎ̇(𝑡𝑡)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡)𝑇𝑇

� ∙ 𝑐𝑐𝛿𝛿 . 
 

(121) 

 

�̇̅�𝑣2 = ��̅�𝑣1�̇ ∙ �
ℎ(𝑡𝑡)𝑇𝑇 0 0

0 ℎ(𝑡𝑡)𝑇𝑇 0
0 0 ℎ(𝑡𝑡)𝑇𝑇

� + �̅�𝑣1� ∙ �
ℎ̇(𝑡𝑡)𝑇𝑇 0 0

0 ℎ̇(𝑡𝑡)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡)𝑇𝑇

�� ∙ 𝑐𝑐𝛿𝛿 . 
 

(122) 

 
 

E. Computation of key properties: rate, angular momentum and torque 
Once the coefficients in Eqs. (114), (118) have been selected – for instance by methods in chapter IV - the rate 

signal 𝜔𝜔 can be derived from the orthonormal vectors 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3 as shown in Eq. (17): 
 

𝜔𝜔 = �
𝜔𝜔𝑥𝑥
𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧
� = �

𝑣𝑣3̇𝑇𝑇 ∙ 𝑣𝑣2 = −𝑣𝑣2̇𝑇𝑇 ∙ 𝑣𝑣3
𝑣𝑣1̇𝑇𝑇 ∙ 𝑣𝑣3 = −𝑣𝑣3̇ 𝑇𝑇 ∙ 𝑣𝑣1
𝑣𝑣2̇𝑇𝑇 ∙ 𝑣𝑣1 = −𝑣𝑣1̇𝑇𝑇 ∙ 𝑣𝑣2

�. (123) 

 
From the rate signal 𝜔𝜔 the angular momentum ℎ𝑏𝑏  can be expressed in body frame as 
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ℎ𝑏𝑏 = 𝐼𝐼 ∙ 𝑇𝑇𝑏𝑏𝑏𝑏 ∙ 𝜔𝜔𝑏𝑏 , (124) 
 

where 𝐼𝐼 denotes the 3x3 moment of inertia matrix. Inserting Eqs. (11), (123) into Eq. (124) yields for the angular 
momentum 

 

ℎ𝑏𝑏 = 𝐼𝐼 ∙ �
| | |
𝑣𝑣1 𝑣𝑣2 𝑣𝑣3
| | |

� ∙ �
−𝑣𝑣3𝑇𝑇 ∙ �̇�𝑣2
+𝑣𝑣3𝑇𝑇 ∙ �̇�𝑣1
−𝑣𝑣2𝑇𝑇 ∙ �̇�𝑣1

�. (125) 

 
From the angular momentum ℎ𝑏𝑏  the torque signal 𝜏𝜏 can be derived by building the time derivative (denoted as 

“( )′”with respect to the inertial frame as shown in Fig. 1 which gives 
 

𝜏𝜏𝑏𝑏 = (ℎ𝑏𝑏)′ = 𝐼𝐼 ∙ �𝑇𝑇𝑏𝑏𝑏𝑏 ∙ 𝜔𝜔𝑏𝑏�′ = 𝐼𝐼 ∙ ��𝑇𝑇𝑏𝑏𝑏𝑏�′ ∙ 𝜔𝜔𝑏𝑏 + 𝑇𝑇𝑏𝑏𝑏𝑏 ∙ (𝜔𝜔𝑏𝑏)′�. (126) 
 
From Eq. (4) follows 
 

�𝑇𝑇𝑏𝑏𝑏𝑏�
′ = 𝜔𝜔�𝑏𝑏 ∙ 𝑇𝑇𝑏𝑏𝑏𝑏 → ��𝑇𝑇𝑏𝑏𝑏𝑏�′�

𝑇𝑇
= �𝑇𝑇𝑏𝑏𝑏𝑏�

′  =   �𝜔𝜔�𝑏𝑏 ∙ 𝑇𝑇𝑏𝑏𝑏𝑏�
𝑇𝑇 = −𝑇𝑇𝑏𝑏𝑏𝑏 ∙ 𝜔𝜔�𝑏𝑏 → �𝑇𝑇𝑏𝑏𝑏𝑏�

′  = −𝑇𝑇𝑏𝑏𝑏𝑏 ∙ 𝜔𝜔�𝑏𝑏 . (127) 
 
Inserting Eq. (127) into Eq. (126) gives 
 

𝜏𝜏𝑏𝑏 = 𝐼𝐼 ∙ ��𝑇𝑇𝑏𝑏𝑏𝑏�′ ∙ 𝜔𝜔𝑏𝑏 + 𝑇𝑇𝑏𝑏𝑏𝑏 ∙ (𝜔𝜔𝑏𝑏)′� = 𝐼𝐼 ∙ �−𝑇𝑇𝑏𝑏𝑏𝑏 ∙ 𝜔𝜔�𝑏𝑏 ∙ 𝜔𝜔𝑏𝑏���������
=0

+ 𝑇𝑇𝑏𝑏𝑏𝑏 ∙ (𝜔𝜔𝑏𝑏)′� = 𝐼𝐼 ∙ 𝑇𝑇𝑏𝑏𝑏𝑏 ∙ (𝜔𝜔𝑏𝑏)′. 
(128) 

 
In Eq. (128) the rate acceleration (𝜔𝜔𝑏𝑏)′ can be computed from Eq. (18) to get 
 

𝜏𝜏𝑏𝑏 = 𝐼𝐼 ∙ 𝑇𝑇𝑏𝑏𝑏𝑏 ∙ (𝜔𝜔𝑏𝑏)′ = 𝐼𝐼 ∙ �
| | |
𝑣𝑣1 𝑣𝑣2 𝑣𝑣3
| | |

� ∙ �
+�̈�𝑣3𝑇𝑇 ∙ 𝑣𝑣2 + �̇�𝑣3𝑇𝑇 ∙ �̇�𝑣2
+�̈�𝑣1𝑇𝑇 ∙ 𝑣𝑣3 + �̇�𝑣1𝑇𝑇 ∙ �̇�𝑣3
−�̈�𝑣1𝑇𝑇 ∙ 𝑣𝑣2 − �̇�𝑣1𝑇𝑇 ∙ �̇�𝑣2

�. (129) 

 

F. Numerical computation of the time dependent unit vectors 𝒗𝒗𝟏𝟏, 𝒗𝒗𝟐𝟐, 𝒗𝒗𝟑𝟑 and its derivatives 
In order to compute the key properties rate, angular momentum and torque from Eqs. (123), (125), (129), the 

computation of the time dependent unit vectors 𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), its first derivatives �̇�𝑣1(𝑡𝑡), �̇�𝑣2(𝑡𝑡), �̇�𝑣3(𝑡𝑡) and its 
second derivatives �̈�𝑣1(𝑡𝑡), �̈�𝑣2(𝑡𝑡), �̈�𝑣3(𝑡𝑡) is required. 

From Eq. (19) vector 𝑣𝑣1 is defined as 
 

𝑣𝑣1 =
�̅�𝑣1

|�̅�𝑣1| =
�̅�𝑣1

��̅�𝑣1
𝑇𝑇�̅�𝑣1���
=:𝐴𝐴

=
�̅�𝑣1
√𝐴𝐴

. 
(130) 

 
The derivative can be computed from the quotient rule to be 
 

�̇�𝑣1 =
�̇̅�𝑣1√𝐴𝐴 − �̅�𝑣1√�̇�𝐴

𝐴𝐴
. (131) 

 
Using Eq. (176) yields for √�̇�𝐴 
 

√�̇�𝐴 =
1

2√𝐴𝐴
∙ �̇�𝐴 =

2�̇̅�𝑣1
𝑇𝑇�̅�𝑣1

2��̅�𝑣1𝑇𝑇�̅�𝑣1
=

�̇̅�𝑣1
𝑇𝑇�̅�𝑣1

��̅�𝑣1𝑇𝑇�̅�𝑣1
=
�̇̅�𝑣1

𝑇𝑇�̅�𝑣1
√𝐴𝐴

, (132) 

 
and inserting Eq. (132) into Eq. (131) gives for �̇�𝑣1 
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�̇�𝑣1 =
�̇̅�𝑣1√𝐴𝐴 − �̅�𝑣1√�̇�𝐴

𝐴𝐴
=
�̇̅�𝑣1√𝐴𝐴 − �̅�𝑣1

�̇̅�𝑣1
𝑇𝑇�̅�𝑣1
√𝐴𝐴

𝐴𝐴
=
�̇̅�𝑣1�̅�𝑣1𝑇𝑇�̅�𝑣1 − �̅�𝑣1�̇̅�𝑣1

𝑇𝑇�̅�𝑣1

𝐴𝐴
3
2

=

�
1 0 0
0 1 0
0 0 1

�
�������

=:𝐸𝐸

∙ �̅�𝑣1𝑇𝑇�̅�𝑣1 − �̅�𝑣1�̅�𝑣1𝑇𝑇

𝐴𝐴
3
2

�̇̅�𝑣1, 
(133) 

 

�̇�𝑣1 =
𝐸𝐸 ∙ �̅�𝑣1𝑇𝑇�̅�𝑣1 − �̅�𝑣1�̅�𝑣1𝑇𝑇

𝐴𝐴
3
2

�̇̅�𝑣1. 
 

(134) 

 
Vector �̇̅�𝑣1 is computed from Eq. (20). The second derivative, �̈�𝑣1, is derived from Eq. (133): 
 

�̈�𝑣1 =
��̈̅�𝑣1√𝐴𝐴 + �̇̅�𝑣1√�̇�𝐴 − �̇̅�𝑣1√�̇�𝐴 − �̅�𝑣1√�̈�𝐴� 𝐴𝐴 − ��̇̅�𝑣1√𝐴𝐴 − �̅�𝑣1√�̇�𝐴� �̇�𝐴

𝐴𝐴2
, (135) 

 

�̈�𝑣1 =
��̈̅�𝑣1√𝐴𝐴 − �̅�𝑣1√�̈�𝐴�𝐴𝐴 − ��̇̅�𝑣1√𝐴𝐴 − �̅�𝑣1√�̇�𝐴� �̇�𝐴

𝐴𝐴2
, 

 
(136) 

 

�̈�𝑣1 =
�̈̅�𝑣1𝐴𝐴

3
2 − �̇̅�𝑣1√𝐴𝐴 ∙ �̇�𝐴 − �̅�𝑣1 �√�̈�𝐴 ∙ 𝐴𝐴 − √𝐴𝐴 ∙̇ �̇�𝐴�

𝐴𝐴2
. 

 
(137) 

 
and vector �̈̅�𝑣1 is computed from Eq. (22). In Eq. (137) the expression √�̈�𝐴 can be computed from Eq. (132) 
 

√�̈�𝐴 =
��̈̅�𝑣1

𝑇𝑇�̅�𝑣1 + �̇̅�𝑣1
𝑇𝑇�̇̅�𝑣1� √𝐴𝐴 − �̇̅�𝑣1

𝑇𝑇�̅�𝑣1√�̇�𝐴
𝐴𝐴

, (138) 

 
and using Eq. (132) 
 

√�̈�𝐴 =
��̈̅�𝑣1

𝑇𝑇�̅�𝑣1 + �̇̅�𝑣1
𝑇𝑇�̇̅�𝑣1� √𝐴𝐴 − �̇̅�𝑣1

𝑇𝑇�̅�𝑣1
�̇̅�𝑣1

𝑇𝑇�̅�𝑣1
√𝐴𝐴

𝐴𝐴
, 

(139) 

 

√�̈�𝐴 =
��̈̅�𝑣1

𝑇𝑇�̅�𝑣1 + �̇̅�𝑣1
𝑇𝑇�̇̅�𝑣1� 𝐴𝐴 − �̇̅�𝑣1

𝑇𝑇�̅�𝑣1�̇̅�𝑣1
𝑇𝑇�̅�𝑣1

𝐴𝐴
3
2

=
��̈̅�𝑣1

𝑇𝑇�̅�𝑣1 + �̇̅�𝑣1
𝑇𝑇�̇̅�𝑣1� 𝐴𝐴 − ��̇̅�𝑣1

𝑇𝑇�̅�𝑣1�
2

𝐴𝐴
3
2

. 
 

(140) 

 
Vectors 𝑣𝑣1, �̇�𝑣1, �̈�𝑣1 are fully determined now. 
The computation of these vectors vectors 𝑣𝑣2, �̇�𝑣2, �̈�𝑣2 is similar to the computation of 𝑣𝑣1, �̇�𝑣1, �̈�𝑣1 and is achieved by 

substituting in the contained equations index 1 with index 2. The only difference is that vectors �̅�𝑣2, �̇̅�𝑣2 and �̈̅�𝑣2 are 
computed by Eqs. (50)-(52) instead. 

A similar computation of vectors 𝑣𝑣3, �̇�𝑣3, �̈�𝑣3 causes numerical problems. The computation of those vectors using 
vectors 𝑣𝑣1, �̇�𝑣1, �̈�𝑣1, 𝑣𝑣2, �̇�𝑣2, �̈�𝑣2 in Eqs. (50)-(52) is numerically better. 

IV. Optimization with Least-Squares-Approach 

One possible strategy in the design of slew maneuvers is to have a flow of an angular momentum which changes 
as low as possible over a big time span from its predefines start value towards its destination value. A least squares 
criterion on the angular momentum components naturally balances the magnitude over the slew time and leads to 
small time instances of high changes at the begin and the end of the slew which will then appear as high torques.  

The angular momentum ℎ𝑏𝑏  is computed according to Eq. (125), (129) as 
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ℎ𝑏𝑏 = 𝐼𝐼 ∙ �
| | |
𝑣𝑣1 𝑣𝑣2 𝑣𝑣3
| | |

� ∙ �
−𝑣𝑣3𝑇𝑇 ∙ �̇�𝑣2
+𝑣𝑣3𝑇𝑇 ∙ �̇�𝑣1
−𝑣𝑣2𝑇𝑇 ∙ �̇�𝑣1

�. (141) 

 
and the torque signal according to Eq. (129) 

 

𝜏𝜏𝑏𝑏 = 𝐼𝐼 ∙ �
| | |
𝑣𝑣1 𝑣𝑣2 𝑣𝑣3
| | |

� ∙ �
+�̈�𝑣3𝑇𝑇 ∙ 𝑣𝑣2 + �̇�𝑣3𝑇𝑇 ∙ �̇�𝑣2
+�̈�𝑣1𝑇𝑇 ∙ 𝑣𝑣3 + �̇�𝑣1𝑇𝑇 ∙ �̇�𝑣3
−�̈�𝑣1𝑇𝑇 ∙ 𝑣𝑣2 − �̇�𝑣1𝑇𝑇 ∙ �̇�𝑣2

�. (142) 

 
Clearly, the products of type 𝑣𝑣1 ∙ 𝑣𝑣3𝑇𝑇 ∙ �̇�𝑣2 containing the unknown parameters enter highly nonlinear in the 

computation of angular momentum ℎ𝑏𝑏  as well as for the torque signal 𝜏𝜏𝑏𝑏. Therefore, a direct manipulation of the 
components of ℎ𝑏𝑏  cannot be performed with the Least-Squares-approach.  

However, inserting Eq. (133) to substitute �̇�𝑣1 and similar �̇�𝑣2 in Eq. (141) yields 
 

ℎ𝑏𝑏 = 𝐼𝐼 ∙ �
| | |
𝑣𝑣1 𝑣𝑣2 𝑣𝑣3
| | |

� ∙

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−𝑣𝑣3𝑇𝑇 ∙ �

�̇̅�𝑣2|�̅�𝑣2| − �̅�𝑣2|�̅�𝑣2|̇
|�̅�𝑣2|2 �

+𝑣𝑣3𝑇𝑇 ∙ �
�̇̅�𝑣1|�̅�𝑣1| − �̅�𝑣1|�̅�𝑣1|̇

|�̅�𝑣1|2 �

−𝑣𝑣2𝑇𝑇 ∙ �
�̇̅�𝑣1|�̅�𝑣1| − �̅�𝑣1|�̅�𝑣1|̇

|�̅�𝑣1|2 �
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 𝐼𝐼 ∙ �
| | |
𝑣𝑣1 𝑣𝑣2 𝑣𝑣3
| | |

� ∙

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−𝑣𝑣3𝑇𝑇 ∙ �

�̇̅�𝑣2
|�̅�𝑣2|�

+𝑣𝑣3𝑇𝑇 ∙ �
�̇̅�𝑣1

|�̅�𝑣1|�

−𝑣𝑣2𝑇𝑇 ∙ �
�̇̅�𝑣1

|�̅�𝑣1|�⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (143) 

 
This means, that nevertheless the length of the angular momentum vector ℎ𝑏𝑏  can be reduced by minimizing |�̇̅�𝑣1| 

and |�̇̅�𝑣2| separately.  
Inserting Eq. (114) in Eq. (116) results in 
 

�̇̅�𝑣1(𝑡𝑡) = �
ℎ̇(𝑡𝑡)𝑇𝑇 0 0

0 ℎ̇(𝑡𝑡)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡)𝑇𝑇

� ∙ �𝑐𝑐10 + 𝐶𝐶𝑣𝑣1 ∙ 𝑥𝑥𝑣𝑣1�. (144) 

 
Evaluating Eq. (144) for several time instances 𝑡𝑡1, 𝑡𝑡2, … 𝑡𝑡𝑚𝑚 yields 
 

�̇̅�𝑣1(𝑡𝑡1) = �
ℎ̇(𝑡𝑡1)𝑇𝑇 0 0

0 ℎ̇(𝑡𝑡1)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡1)𝑇𝑇

� ∙ �𝑐𝑐10 + 𝐶𝐶𝑣𝑣1 ∙ 𝑥𝑥𝑣𝑣1�

�̇̅�𝑣1(𝑡𝑡2) = �
ℎ̇(𝑡𝑡2)𝑇𝑇 0 0

0 ℎ̇(𝑡𝑡2)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡2)𝑇𝑇

� ∙ �𝑐𝑐10 + 𝐶𝐶𝑣𝑣1 ∙ 𝑥𝑥𝑣𝑣1�

: : :

�̇̅�𝑣1(𝑡𝑡𝑚𝑚) = �
ℎ̇(𝑡𝑡𝑚𝑚)𝑇𝑇 0 0

0 ℎ̇(𝑡𝑡𝑚𝑚)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡𝑚𝑚)𝑇𝑇

� ∙ �𝑐𝑐10 + 𝐶𝐶𝑣𝑣1 ∙ 𝑥𝑥𝑣𝑣1�

. (145) 

 
Wishing that the left hand side of Eq. (145) becomes zero introduces an equation error vector 𝑒𝑒: 
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�

0
0
:
0

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ℎ̇(𝑡𝑡1)𝑇𝑇 0 0

0 ℎ̇(𝑡𝑡1)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡1)𝑇𝑇

ℎ̇(𝑡𝑡2)𝑇𝑇 0 0
0 ℎ̇(𝑡𝑡2)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡2)𝑇𝑇

:
ℎ̇(𝑡𝑡𝑚𝑚)𝑇𝑇 0 0

0 ℎ̇(𝑡𝑡𝑚𝑚)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡𝑚𝑚)𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�𝑐𝑐10 + 𝐶𝐶𝑣𝑣1 ∙ 𝑥𝑥𝑣𝑣1� + 𝑒𝑒. (146) 

 
and after rearranging terms 

 

−

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ℎ̇(𝑡𝑡1)𝑇𝑇 0 0

0 ℎ̇(𝑡𝑡1)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡1)𝑇𝑇

ℎ̇(𝑡𝑡2)𝑇𝑇 0 0
0 ℎ̇(𝑡𝑡2)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡2)𝑇𝑇

:
ℎ̇(𝑡𝑡𝑚𝑚)𝑇𝑇 0 0

0 ℎ̇(𝑡𝑡𝑚𝑚)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡𝑚𝑚)𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑐𝑐10

�����������������������
=:𝑦𝑦�1

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ℎ̇(𝑡𝑡1)𝑇𝑇 0 0

0 ℎ̇(𝑡𝑡1)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡1)𝑇𝑇

ℎ̇(𝑡𝑡2)𝑇𝑇 0 0
0 ℎ̇(𝑡𝑡2)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡2)𝑇𝑇

:
ℎ̇(𝑡𝑡𝑚𝑚)𝑇𝑇 0 0

0 ℎ̇(𝑡𝑡𝑚𝑚)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡𝑚𝑚)𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝐶𝐶𝑣𝑣1

���������������������
=:𝐻𝐻1

∙ 𝑥𝑥𝑣𝑣1 + 𝑒𝑒. (147) 

 
in which clearly the structure evolves for which the Least-Squares approach [5] can be applied to find the optimal 
coefficients 𝑥𝑥�𝑣𝑣1  by the well known solution, 

 
𝑥𝑥�𝑣𝑣1 = (𝐻𝐻1

𝑇𝑇 ∙ 𝐻𝐻1)−1 ∙ 𝐻𝐻1𝑇𝑇 ∙ 𝑦𝑦�1. (148) 
 
With these coefficients the dynamics of vector �̅�𝑣1(𝑡𝑡) in Eq. (124) and thus vector 𝑣𝑣1(𝑡𝑡) in Eq. (19) and its 

derivatives are fixed. Now vector 𝑣𝑣2(𝑡𝑡) needs to be determined: 
In a similar way optimal values for 𝑐𝑐𝛿𝛿  can be found using Eqs. (19) to find the optimal coefficients 𝑥𝑥�𝛿𝛿: 
 

�

0
0
:
0

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

�̅�𝑣1�̇(𝑡𝑡1) ∙ �
ℎ(𝑡𝑡1)𝑇𝑇 0 0

0 ℎ(𝑡𝑡1)𝑇𝑇 0
0 0 ℎ(𝑡𝑡1)𝑇𝑇

� + �̅�𝑣1�(𝑡𝑡1) ∙ �
ℎ̇(𝑡𝑡1)𝑇𝑇 0 0

0 ℎ̇(𝑡𝑡1)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡1)𝑇𝑇

�

�̅�𝑣1�̇(𝑡𝑡2) ∙ �
ℎ(𝑡𝑡2)𝑇𝑇 0 0

0 ℎ(𝑡𝑡2)𝑇𝑇 0
0 0 ℎ(𝑡𝑡2)𝑇𝑇

� + �̅�𝑣1�(𝑡𝑡2) ∙ �
ℎ̇(𝑡𝑡2)𝑇𝑇 0 0

0 ℎ̇(𝑡𝑡2)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡2)𝑇𝑇

�

:

�̅�𝑣1�̇(𝑡𝑡𝑚𝑚) ∙ �
ℎ(𝑡𝑡𝑚𝑚)𝑇𝑇 0 0

0 ℎ(𝑡𝑡𝑚𝑚)𝑇𝑇 0
0 0 ℎ(𝑡𝑡𝑚𝑚)𝑇𝑇

� + �̅�𝑣1�(𝑡𝑡𝑚𝑚) ∙ �
ℎ̇(𝑡𝑡𝑚𝑚)𝑇𝑇 0 0

0 ℎ̇(𝑡𝑡𝑚𝑚)𝑇𝑇 0
0 0 ℎ̇(𝑡𝑡𝑚𝑚)𝑇𝑇

�
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

���������������������������������������������������
=:𝐽𝐽

(𝑐𝑐𝛿𝛿0 + 𝐶𝐶𝛿𝛿 ∙ 𝑥𝑥𝛿𝛿) + 𝑒𝑒, (149) 

 
and after rearranging terms 

 
−𝐽𝐽 ∙ 𝑐𝑐𝛿𝛿0�����
=:𝑦𝑦�𝛿𝛿

=   𝐽𝐽 ∙ 𝐶𝐶𝛿𝛿���
=:𝐻𝐻𝛿𝛿

∙ 𝑥𝑥𝛿𝛿 + 𝑒𝑒. (150) 
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in which also the structure evolves for which the Least-Squares-Approach [5] can be applied to find the remaining 
optimal coefficients 𝑥𝑥�𝛿𝛿 , 

 
𝑥𝑥�𝛿𝛿 = (𝐻𝐻𝛿𝛿

𝑇𝑇 ∙ 𝐻𝐻𝛿𝛿)−1 ∙ 𝐻𝐻𝛿𝛿𝑇𝑇 ∙ 𝑦𝑦�𝛿𝛿 . (151) 
 
Numerical tests show that the matrices 𝐻𝐻1 and 𝐻𝐻𝛿𝛿  have full rank, meaning that all free parameters in 𝑥𝑥𝑣𝑣1  and 𝑥𝑥𝛿𝛿  

contribute to an optimal result. 
With these coefficients the dynamics of vector �̅�𝑣2(𝑡𝑡) in Eq. (121) and thus vector 𝑣𝑣2(𝑡𝑡) in Eq. (23) and its 

derivatives are fixed. The dynamics of the attitude is now completely determined. The key signals like rate, angular 
momentum and torque can be computed from these vectors according to section D. 

To summarize, In order to perform the Least-Squares-Approach the following computational steps need to be 
performed as described in Table 1: 

 
Table 1: Computational steps to perform the Least-Squares-Approach 

Step # Contents 
Step 1:  Polynomial order selection: 

Select order 𝑛𝑛 of the polynomial, i.e. the dimension 𝑛𝑛 + 1 of time vector ℎ in Eq. (20) 
Step 2:  
 

Mapping of physical boundary constraints into inertial frame 𝑖𝑖 as vector boundary constraints �̅�𝑣1(𝑡𝑡): 
Computation of vector 𝑐𝑐10 and matrix 𝐶𝐶𝑣𝑣1  in Eq. (114) 

Step 3:  
 

Solving Least-Squares problem as in Eq. (148) 

Step 4:  Computation of vectors 𝑣𝑣1, �̇�𝑣1, �̈�𝑣1: 
The computations are performed in section 11. 

Step 5:  Mapping of physical boundary constraints into inertial frame 𝑖𝑖 as vector boundary constraints 𝛿𝛿(𝑡𝑡): 
Computation of vector 𝑐𝑐𝛿𝛿0 and matrix 𝐶𝐶𝛿𝛿 in Eq. (120) 

Step 6:  Solving Least-Squares problem as in Eq. (151) 
Step 7:  Computation of vectors 𝑣𝑣2, �̇�𝑣2, �̈�𝑣2 as well as 𝑣𝑣3, �̇�𝑣3, �̈�𝑣3: 

The computations are performed in section G. 
Step 8:  Computation of physical key signals: 

Time dependent computation of transformation matrix 𝑇𝑇𝑏𝑏𝑏𝑏(𝑡𝑡) in section 4, rate 𝜔𝜔(𝑡𝑡), angular 
momentum ℎ𝑏𝑏(𝑡𝑡) and torque 𝜏𝜏𝑏𝑏(𝑡𝑡) in section F. 

 

V.Numerical Example 

Find in Table 2 the boundary conditions of a test scenario for which the presented method has been applied. The 
results show that the attitude boundary condition, the rate velocity and rate accelerations are satisfied in Fig. 4, Fig. 5, 
Fig. 6, respectively. The angular momentum has been minimized (Fig. 7) and the necessary torque in Fig. 3 shows for 
a very short time (below 1 second) a high peak value that can be realized by CMGs. 

 
Table 2: Boundary conditions of slew test scenario 

  Initial condition Final condition 

Attitude (Euler angle 𝝋𝝋,𝜽𝜽,𝝍𝝍 in 
sequence 1-2-3) / rad 

𝝋𝝋 -1.02184733442150 -0.87720143423133 
𝜽𝜽  0.92268904597360 -0.00006732457341 
𝝍𝝍 -0.00626370681618 -0.00095302845659 

Rotational rate 𝝎𝝎 / rad / s 𝝎𝝎𝒙𝒙  0.00000386474988  0.00001556724309 
𝝎𝝎𝒚𝒚 -0.00000173819461 -0.98920919739378 
𝝎𝝎𝒛𝒛 -0.81762488957959  0.91210161161081 

Rate acceleration �̇�𝝎 / rad / s2 �̇�𝝎𝒙𝒙 -0.00006614697502 -0.00661803211876 
�̇�𝝎𝒚𝒚 -0.00094028867769 -0.00000350937716 
�̇�𝝎𝒛𝒛  0.00002671368988 -0.00000010072336 
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Fig. 3 Torque in body frame 

 
Fig. 4 Euler angles in sequence 123 
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Fig. 5 Rotation rate velocity in body frame 

 
Fig. 6 Rotation rate acceleration in body frame 
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Fig. 7 Angular momentum in body frame 

 

The overall computation time of the method is below 0.1 s using a standard laptop with an Intel(R) Core(TM) i7-
8850H CPU @ 2.60GHz. 

 

VI.Summary 

In section I a parametrization of possible slew maneuvers has been presented which has the following properties: 
1. The kinematic differential equation (4) is automatically exactly satisfied without the need of time consuming 

numerical integration. 
2. In addition, the initial and the final boundary conditions in section 2 on attitude, rotational rate and rotational 

acceleration are automatically satisfied as well. 
3. Fully free design parameters allow the shape optimization of the slew dynamics in between the boundary 

conditions. 
The key idea of this parametrization is to map the physical boundary conditions from section 2 into vector 

boundary conditions for vector 𝑣𝑣1 and for vector 𝑣𝑣2 in section C. This mapping has two advantages: The vector 
boundary conditions can be satisfied subsequently rather than simultaneously, and additional unconstraint design 
parameters appear which can be used to optimize the slew shape. Of course, the proposed parametrization includes 
rest-to-rest maneuvers as well, if the rate velocity can be selected to be zero and the rate acceleration constraint is 
omitted. 

On the basis of this parametrization a Least-Squares-Approach (section H) minimizes certain linear terms which 
appear in the formula for the angular momentum in Eq. (125). The advantage of the method is its very low computation 
time, since only a low number of analytical matrix/vector computations and no iterations need to be performed. 
Furthermore, only short time instances with high torques are generated. The disadvantage is that constraints for 
instance on the torque signal cannot be considered. 

The test of the method applied in section V on a slew with given boundary conditions was successful in terms of 
satisfying all those boundary conditions, a small period of high torque and a low computation time. 
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